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Abstract 24 

Using analogue techniques, we attempted to model the complex tectonic deformation pattern 25 

observed along the North-Anatolian Fault in the Sea of Marmara from morpho-bathymetry and 26 

seismic reflection images. In particular this paper focuses on the so-called Cinarcik segment of the 27 

fault connecting the eastern Izmit segment, which entirely ruptured during the Mw 7.4, 1999 28 

earthquake, to the western segment of the Central High. The Çınarcık segment, potentially loaded 29 

after the Izmit earthquake, is expected to rupture during an earthquake occurring in the near future, 30 

possibly the next decades, with a high potential to affect the Istanbul metropolitan area. Our 31 

analysis suggests that the development of the observed structures accommodating strike-slip, 32 

transtensional and transpressional deformations, could be explained by changes in the geometry 33 

of fault segments within a right-lateral strike-slip tectonic regime. Tectonic deformations were 34 

reproduced in the analogue model by imposing a small (about 10°) and sharp difference in the 35 

relative orientations of the strike-slip segments at the edges of a major releasing bend. In the model 36 

slower strain accumulation occurs along the analogue of the Çınarcık segment than along the 37 

analogue of the Izmit segment of the fault. This would predict a delay for earthquakes triggered 38 

by stress transfer between the Izmit and Çınarcık segments. The model further predicts that most 39 

of the deformation in the Çınarcık basin is controlled by the sharp changes in the geometry of the 40 

fault itself. 41 

1. Introduction  42 

The North Anatolian Fault (NAF) is a right-lateral, >1200 km-long continental transform fault that 43 

separates the Eurasian and Anatolian plates (Fig. 1) (Şengör et al., 2005). In its eastern part, the 44 

NAF is constituted by a single fault strand that experiences almost pure strike-slip deformation. 45 
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To the west, it separates into two major branches, the Northern branch (N-NAF) and the Southern 46 

branch (S-NAF) (Fig.1) that accommodate predominantly transtensive deformation. According to 47 

GPS modelling, the northernmost of these branches (NAF-N in Fig. 1) takes up most Eurasian-48 

Anatolian relative motion, about 24±1 mm/yr (McClusky et al., 2003). Geodynamic models 49 

explain the transtension pattern observed in the Marmara basin as a consequence of Anatolia 50 

escaping towards the west, with its rate of counterclockwise rotation progressively increasing 51 

westward in response to the Hellenic subduction (McClusky et al., 2000). The NAF-N pull-apart 52 

system of the Sea of Marmara creates deep tectonic depressions that reach over 1200 m below sea 53 

level, separated by structural highs (Fig. 1). Despite the formation of the Sea of Marmara being 54 

elegantly explained as a consequence of major oversteps along the westward propagating NAF 55 

(Barka et al., 1988; Armijo et al., 1999; Şengör et al., 2005), there remain unsolved issues 56 

regarding its recent tectonic evolution and present activity, issues that are particularly critical for 57 

reliable earthquake scenarios in a region of high seismic hazard. According to historical catalogues 58 

(Ambraseys, 2002) the Sea of Marmara and other adjacent regions along the NAF are sites of 59 

major earthquakes (Mw>= 7) with a rather regular periodicity of about 250-300 years along 60 

specific fault segments. The delimitation of these segments and analysis of their mutual interaction 61 

through time is particularly complex in the Sea of Marmara due the presence of releasing and 62 

restraining bends. This structural complexity has led to contrasting interpretations. Existing models 63 

assume: (1) the presence of a single through-going fault (Le Pichon et al., 2001); (2) a sequence 64 

of pull-apart basins with northwest-trending normal faults and ENE-trending strike-slip faults 65 

(Armijo et al., 2002); or (3) a major negative flower structure (Laigle et al., 2008). Models of 66 

seismic hazard depend strongly on the assumed tectonic model because the length of potentially 67 

rupturing seismogenic segments differs significantly between the different model reconstructions.  68 
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 69 

Figure 1 Tectonic map of the Sea of Marmara region (modified from Le Pichon et al., 2003; Gasperini et al., 2011a; 70 

Grall et al., 2012, 2013). Stars show locations of earthquake epicentres. Dotted line in yellow shows the surface 71 

rupture of the 1999 Izmit earthquake as estimated from its aftershock locations. Black dotted box shows the area of 72 

the map displayed in Fig.2. The lower inset highlights the main regional tectonic elements in this area. 73 

 74 

Here we focus on structural analysis of the Cinarcik Basin, the easternmost deep basin (about 1200 75 

m) in the Sea of Marmara. The basin is bounded to the north by the so called Cinarcik segment of 76 

the NAF-N that connects the Izmit segment to the east with the Central High to the west (Fig. 2). 77 

This segment is inferred to have been tectonically loaded by the 1999 Mw=7.4 Izmit earthquake 78 

which ruptured the fault through the entire Gulf of Izmit (Gasperini et al., 2011). For this reason, 79 

describing the position and geometry of active faults and reconstructing their recent deformation 80 



 Confidential manuscript submitted to Tectonophysics 

 

5 

 

history can provide key information for reliable seismic risk scenarios in the Istanbul metropolitan 81 

area.  82 

In particular, our work will address the following topics: 83 

1)  Can restraining and releasing bends along a transcurrent-type fault act as barriers to stress 84 

transfer and earthquake slip? Or do they help earthquake propagation, as suggested by 85 

Cunningham and Mann, (2007)?  86 

2) Does co-seismic strain release on the Izmit segment directly affect strain accumulation on 87 

the Cinarcik segment?  88 

3) Since the Izmit segment is (and has been) oriented at an angle relative to the Central High 89 

segment towards the west (about 10°), could this difference be responsible for the 90 

compressive deformation observed at the NW edge of the Cinarcik basin? 91 

To analyse these problems, we used a 3D scaled sandbox model which reproduced the NAF-N 92 

segmentation as imaged by geophysical data, i.e., by morphobathymetry and seismic reflection 93 

profiles across the Cinarcik Basin. Our model experiment was successful in reproducing observed 94 

deformation patterns along the basin, and therefore the eastern part of the NAF-N, and gives us 95 

insights on possible stress transfer mechanisms between fault segments near the Istanbul 96 

metropolitan area. 97 

2. Tectonic Setting 98 

 The Cinarcik basin is the easternmost sub-basin of the Sea of Marmara, located ∼20 km to 99 

the southeast of Istanbul (Fig. 1). It is about 50 km long, 18 km wide, and reaches a maximum 100 

depth of 1270 m. The basin is positioned on the extensional side of the prominent Tuzla fault bend 101 
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(Fig. 2). A second major bend, the Istanbul bend, connects the Cinarcik basin with the Central 102 

High segment to the west (Fig. 2). 103 

Seismic reflection profiles indicate that the southern and the northern margins of the Cinarcik basin 104 

accommodate a large amount of extension, and that the master fault creating the asymmetric basin-105 

forming depression is located along its northern edge (Okay et al., 2004; Seeber et al., 2004, 2006; 106 

Carton et al., 2007; Sorlien et al., 2012). These studies also show that the main basin depocenter 107 

gradually migrated to the east following the development of the master fault, which coincides with 108 

the NAF-N principal displacement zone and it is known as the Cinarcik Segment (Le Pichon et al., 109 

2001). Tectonic reconstructions assume that the basin depocenter grew by propagating from the 110 

west »2.5-1.5 Ma, and reached its present location at »1 Ma (Carton, 2007; Sorlien et al., 2012; 111 

Kurt, 2013) (Fig. 2). This evolution is recorded in the 4-6 km-thick sediment fill (Carton et al., 112 

2007) which shows a marked asymmetry toward the Gulf of Izmit, where the basin narrows (Okay 113 

et al., 2004).  114 

 115 
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 116 

Figure 2. Tectonic setting of the Cinarcik Basin. Faults modified from Le Pichon et al., 2003; Gasperini et al., 117 

2011a; Grall et al., 2012, 2013. The major fault is highlighted in red. Thin lines represent the isobath lines for every 118 

50 m and 500 m.  IB and TB represent the Istanbul Bend and Tuzla Bend, respectively. 119 

 120 

The active NW-SE trending fault bordering the basin to the north corresponds to a steep scarp cut 121 

by canyons that can reach 12 km in length, affected by scars of submarine landslides up to 2.5 to 122 

4 km wide. A major landslide affecting the NE edge of the basin, activated in the upper Pleistocene, 123 

was interpreted as being triggered by one or more earthquakes along the NAF (Görür and Çağatay, 124 

2010; Özeren et al., 2010). To the south, the Cinarcik basin is bounded by an antithetic set of en-125 

echelon normal faults that trend subparallel to the NAF-N (Fig. 2) (Smith et al., 1995; Le Pichon 126 

et al., 2001; Armijo et al., 2002). Bécel et al. (2010) observed that this low angle normal fault 127 

system connects to a transtensional zone towards the south which seems to have accommodated 128 
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early Pliocene stretching. In the central part of the basin another fault system joins the Izmit 129 

segment (Carton et al., 2007; Grall et al., 2012).  130 

The tectonics of the Cinarcik basin has been interpreted in the frame of the overall Sea of Marmara 131 

geologic setting, following several models. Armijo et al. (2002) considered the basin to be a 132 

wedge-shaped transtensional basin that formed across a large releasing step-over of the main 133 

strike-slip fault zone. Other models (e.g., Laigle et al., 2008) assume that the general architecture 134 

and lateral heterogeneities below the Cinarcik basin are caused by inherited basement structures 135 

with numerous faulted and tilted upper crustal blocks.  These bounding block faults seem to 136 

penetrate to a maximum depth of 6 km below the seafloor (Bécel et al., 2009, 2010). In all these 137 

models, the Cinarcik basin formed at a bend in the NAF and basin subsidence was due to oblique 138 

slip on a steeply-dipping, non-vertical transform fault (Seeber et al., 2006, 2010). Thus, fault 139 

geometry, potentially inherited from pre-existing sutures, controls the kinematics of the faults in 140 

the basin, and is critical for modelling their seismogenic behavior (Seeber et al., 2006). 141 

Seismically, the Cinarcik basin is located in a key area. Since 1939, the NAF has been site of seven 142 

M>7 earthquakes, following a sequence which originated in eastern Anatolia and propagated to 143 

the west towards Istanbul. The most recent earthquake, the 1999 Mw7.4 Izmit event, ruptured a 144 

segment of the NAF-N at the eastern end of the Sea of Marmara (Gasperini et al., 2011b). The 145 

Ganos segment, at the opposite western end of the Sea of Marmara, was the site of a Mw 7.4 146 

earthquake in 1912 (Fig. 1). The most recent event occurring along the Cinarcik segment and 147 

affecting the Istanbul metropolitan area is a Ms=6.4 event in 1963 - recently re-evaluated by 148 

Baştürk et al., 2020. This seismic sequence leaves a seismic gap along the 150 km-long NAF-N 149 

segment cutting through the Cinarcik basin between the Prince Islands Fault (PIF) and the Central 150 

High Fault (CHF) (Bohnhoff et al., 2013; Ergintav et al., 2014). This gap is located only 40 km 151 
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southeast of Istanbul, with a potential for earthquakes estimated to be M=7 or higher (Parsons et 152 

al., 2000, 2004, Bohnhoff et al. 2013). The earthquake fault slip in the 1999 Izmit earthquake is 153 

assumed to have increased the elastic strain accumulation on the adjacent segment towards the 154 

west  (Parsons, 2000; H. Ferrari et al., 2000; Uçarkuş et al., 2011; Gasperini et al., 2011b, Bohnhoff 155 

et al., 2013) which is considered locked to a depth of ~10 km accumulating the slip deficit 156 

(Bohnhoff et al., 2013). At the surface of the 1999 Izmit rupture zone, however, the observed 157 

current maximum creep rate is 8 mm/yr (Çakir et al., 2012; Aslan et al., 2019). 158 

 159 

2.1 Cross-Sectional Geometries of the Cinarcik Basin 160 

We used a set of seismic reflection profiles collected in the Cinarcik basin during the 161 

SEISMARMARA cruise (Hirn et al. 2001) to characterize tectonic deformation along the NAF in 162 

this region, and to compare to results from analogue modelling. The SEISMARMARA seismic 163 

lines were collected onboard of the R/V Nadir using a 4.5 km long streamer and an airgun source. 164 

These dataset has been used by Carton et al. (2007) to reconstruct the three-dimensional structure 165 

and seismostratigraphy of the Cinarcik basin, and to infer its geological evolution. Most of the 166 

seismic lines cut orthogonally across the northern shelf of the Cinarcik basin from 28.4°E to 167 

29.3°E, crossing the principal deformation zone of the NAF-N (Fig. 3). Geophysical data presented 168 

here consists of time-migrated sections that were filtered and plotted using SeisPrho (Gasperini 169 

and Stanghellini, 2009) to produce geo-referenced bitmaps that were used for data interpretation 170 

and line-drawings. 171 

In this study we focus on three seismic sections: 1) Line 101, in the eastern part of the basin, to the 172 

east of the Tuzla Bend; 2) Line 122, in the central part of the Cinarcik basin; 3) Line 184, which 173 

cuts across the NAF-N immediately to the west of the Istanbul Bend.  174 
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Line 101 (section A-A’, Fig. 3a) to the west of the Izmit Gulf highlights the presence of a narrow 175 

sub-vertical deformation zone that corresponds to the main strand of the NAF-N. We interpret this 176 

pattern as diagnostic of almost pure strike-slip deformation. The minor features that ‘deform’ the 177 

seafloor are probably related to gravity failures caused by co-seismic shaking during large 178 

magnitude earthquakes.  179 

Moving to the centre of the basin, seismic Line 122 (section B-B’, Fig. 3b) shows the presence of 180 

growth structures and fanning of the sediment packages towards the NNE, suggesting the presence 181 

of extensional/transtensional syn-depositional deformation. The main fault trace extends across 182 

the continental shelf and slope which constitute the footwall of an extensional/transtensional fault, 183 

that vertically displaces the seafloor by more than 1 km (Fig. 3b). This deformation pattern 184 

characterizes the Cinarcik segment of the NAF-N from 29.10°to 28.8°E, where the 185 

morphobathymetric data show a sharp change in the NAF-N’s orientation from 300°N to 270°N.  186 

 187 
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 188 

Figure 3. Seismic profiles across the Cinarcik Basin. a) Line 101 (section A-A’) located immediately E of the Tuzla 189 

Bend; b) Line 122 (section B-B’), crossing the central part of the Cinarcik basin; c) Line 184 (section C-C’) cutting 190 

across the NAF trace to the west the Istanbul Bend. All seismic reflection profiles were collected during the 191 

SEISMARMARA cruise (Hirn et al. 2001; Carton et al., 2007). 192 
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 193 

At the western end of the basin, the shelf margin bends again towards 255°N and shows a 194 

rectilinear shape clearly controlled by tectonic deformation (Fig. 3b). Line 184 (section C-C’ in 195 

Fig. 3c) shows a composite deformation pattern. To the north, a high-amplitude reflector, probably 196 

marking the acoustic basement’s top (basin edge in Fig. 6), is displaced by a sub-vertical fault 197 

showing a clear topographic expression. This structure, characterized by strike-slip kinematics, 198 

coincides with the present-day principal displacement zone of the NAF-N, (Fig. 3c). Between the 199 

high-amplitude reflector and the vertical fault, reflectors are folded and pervasively deformed by 200 

compressive deformation. This pattern is probably the effect of transpressive stresses, active in the 201 

past and subsequently replaced by almost pure strike-slip displacement along the sub-vertical 202 

NAF-N trace. This interpretation seems to be confirmed by the presence of more recent 203 

gravitative/extensional failures along the slope that mark the slumping and dismantling of the 204 

topographic high through mass-wasting towards the basin depocenter. 205 

3 Analogue Models: setup and material 206 

The analogue model experiments described in this paper were designed to simulate the 207 

eastern portion of the NAF-N in the Sea of Marmara, and to obtain further insights on the 208 

relationships between the present segmentation and the evolution of the major fault (Fig. 2). In 209 

particular we focussed on how the different orientations of the fault segments can influence the 210 

kinematics of the pull-apart basin and the propagation of strain in a dextral transtensional regime. 211 

Model results were compared with marine geophysical data that includes a multibeam echosounder 212 

morpho-bathymetric map collected by IFREMER in 2000 (Le Pichon et al., 2001) and a set of 213 

multichannel seismic reflection profiles collected during the SEISMARMARA cruise (Hirn et al., 214 

2001) described in the previous section.  215 
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The experimental apparatus consisted of a sandbox with a 250 x 100 cm glass basal plate, 216 

equipped with one computer-controlled motor, and a “structured” light scanner to monitor the 217 

topographic surface of the model with a resolution of 0.71 mm in the x and y directions. In 218 

structured light scanning, also known as “point cloud” mapping, a pattern (e.g., a grid of dots) is 219 

projected onto the surface to be scanned. The distortion of this grid is then used to reconstruct the 220 

surface’s relief. This provides an effective tool to comprehensively measure model uplift and 221 

subsidence. This method allows for high precision quantitative measurements of deformation (e.g., 222 

Nestola et al., 2013; D’Adda et al., 2017). The evolution of the model was recorded using an 223 

overhead NIKON-D5200 digital with 6000x4000 pixel resolution, while a free to move secondary 224 

camera was dedicated to photograph cross sections. In this experimental programme, the overhead 225 

camera captured images and the structured light scanning provided elevation data every 20 226 

minutes, corresponding to 5 mm increments of basal plate displacement. Experiments were 227 

performed using a 1 mm-thick Plexiglas mobile plate that was properly cut to reproduce a 228 

simplified geometry of the NAF-N in the study area (Fig. 4). 229 

 230 
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 231 

Figure 4 a) Geometrical setting of the plate boundary in the study area reproduced using a plexiglas-moving plate. 232 

b) Plan view of the setup a the initial pre-cut step including analogue scaled lengths. The piston on the right 233 

represents the computer-controlled motor within the system.  234 

 235 

The base plate was cut with a 14 cm length releasing bend adjacent to a 9 cm restraining bend 236 

which form an angle of 10° (Fig. 4). This cut constitutes the “basal fault” of the model. Dextral 237 

shear was imposed onto the mobile plate by translating it at a constant displacement rate of 2 cm/h, 238 

for a total displacement of 7 cm. The scaling factor of the models was 2 x 10-6 (1 cm per 5 km): 239 

the 15 km-thick upper crust (Kende et al., 2017) was reproduced by a 1.5 cm-thick sand pack, 240 

while 0.2 cm of silicone represented the ductile lower crust. Serial cross sections with 0.5 cm 241 

spacing were cut at the end of the experiments after wetting the models with tap water and waiting 242 

24 h to ensure complete imbibition. The brittle upper crust was simulated with a 1.5 cm-thick sand 243 

pack consisting of six 0.2 cm-thick alternating white and coloured quartz sand layers. Density of 244 

the sieved sand was 1.670 g/cm3 and the mean quartz grain size was 224 hm. The angle of internal 245 
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friction was 33° and cohesion at peak was 102 Pa (see Table 1) (e.g., D’Adda et al., 2017). To 246 

simulate the mechanical displacement of the viscous lower crust, a basal layer of PDMS 247 

XIAMETER silicone putty mixed with barite powder was placed at the base of the sand pack, 248 

resulting in a thickness of 0.1 cm on the moving plate and 0.2 cm on the basal plate (orange layer 249 

in Fig. 5). The density of this layer was 1.15 g/cm3 and the dynamic shear viscosity was 1.4 x 104 250 

Pa-s.  251 

 252 

Table 1 Mechanical and physical properties of the materials used in the model 253 

Materials Density 

(g/cm3) 

Mean grain size 

(hm) 

Cohesion at peak 

(Pa) 

Angle of 

internal 

friction j 

Dynamic shear 

viscosity h (Pa 

s) 

Sand1 1.670 224 102 33° - - - - 

Silicone + barite 

2 

1.150 - - - - - - - - - - - - 1,4 x 104 

1 Upper crust (from Klinkmüller et al., 2016) 254 
2 Weak lower crust (from Cappelletti et al., 2013) 255 

 256 

Figure 5. Initial stratigraphy chosen for the experiment. The multilayer is formed by a basal plate topped by a 257 

purposely cut, 1 mm-thick plexiglass plate able to move, overlaid by silicon putty reaching a maximum thickness of 258 

2 mm. Six 2 mm-thick sand layers topped by a 3 mm-thick layer complete the setup.  259 
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3.1 Particle Image Velocimetry (PIV)  260 

Particle Image Velocimetry allows for compilation of displacement/velocity map through 261 

measurements of particle displacements across the sand surface between successive photographs 262 

(White et al., 2001; Adam et al., 2002; Adam et al., 2005; Wolf et al., 2003), here taken every 4 263 

mins during the experiment. It reveals where, how and when deformation occurs in the model.  264 

Here we use interrogation areas of pairs of images in 64x64 and 32x32 pixel subregions 265 

gathered from 146 images to derive the best-fit particle displacement in the interrogation areas 266 

through use of the cross-correlation method implemented in the free MATLAB-based PIV-Lab 267 

Software package (Thielicke and Stamhuis, 2014). This led us to obtain a velocity field from 268 

incremental particle displacements at any the time frame. Incremental shear rates, shear strains and 269 

rates of topographic change were calculated using an open-source code (see Bulkan, 2020; 270 

https://doi.org/10.5281/zenodo.3597335) to sample the material derivative of the finer topographic 271 

grid. It uses the velocity gradient matrix created by measuring the derivatives of the 𝑢 and 𝑣 272 

velocity components in the 𝑥 and y directions (Eq.1) ∆	𝑉	represents the velocity gradient matrix: 273 

 274 

∆	𝑉=[ 𝜕𝑢/𝜕𝑥 𝜕𝑢/𝜕𝑦		
𝜕𝑣/𝜕𝑥 𝜕𝑣/𝜕𝑦 		

𝜕𝑢/𝜕𝑧
𝜕𝑣/𝜕𝑧	]        (1) 275 

 276 

The incremental horizontal shear rate is approximated to be a velocity gradient 277 

perpendicular to the velocity discontinuity applied at the base of the model (𝜕𝑢/𝜕𝑦).  278 

The areal strain is the sum of the diagonal components of ∆ 𝑉  (𝐸.. + 𝐸00): 279 

 280 

𝐸.. + 𝐸00=   𝜕𝑢/𝜕𝑥+	𝜕𝑣/𝜕𝑦      (2) 281 

 282 
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The code calculates incremental rates of topographic changes by subtracting the measured 283 

topography at time n-1 from topography at time n, corrected for any displacement between times 284 

n-1 and n. Specifically, the material derivative of topography is determined, i.e., the change in 285 

topography over a time-step that follows the motion at the surface. To do this, the software 286 

measures the relief on the finer mesh of points at each model step, and uses an interpolation of the 287 

velocity field determined from the coarser mesh of PIV sampling subregions to backtrack each 288 

sample point on the fine mesh to where it started from at the end of the previous time step. The 289 

difference between these measurements is the change in relief of this surface point over the time 290 

step. Rates of incremental topographic changes are then related to the incremental strain patterns 291 

in order to understand how relief is generated. Shear rate maps estimate the amount of shear 292 

deformation during each step of the model, while areal strain maps show the rates of extension and 293 

compression in each area.  294 

4. Experimental Results  295 

4.1 Cross-sections 296 

The setup geometry imposed to the model fault generated through transtensional and 297 

transpressional deformation with distributed and focused patterns that follow the along-strike 298 

segmentation of the fault. This is visible in the 3D perspective view of the final model step, after 299 

7 cm of cumulative displacement (Fig. 6). Overall, the basin topography shows a graben 300 

corresponding to the Cinarcik basin depocenter, and the development of a topographic high at the 301 

western end of the basin, in correspondence with the Istanbul Bend. The graben forms as an 302 

asymmetric pull-apart basin narrowing towards the eastern (right) side, with the deepest area 303 

localised in the centre of the basin (Fig. 6). From east to west, the deformation pattern shows the 304 

along-strike development of three systems with different fault characters and associated relief: 1) 305 
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almost pure strike-slip with neutral relief; 2) transtension and negative topography; 3) 306 

transpression and high positive relief. 307 

The final model state was cut along eighteen profiles to provide vertical cross- sections 308 

displaying the internal geometry within the block. Variability in the deformation patterns is 309 

represented by three profiles including pure strike-slip deformation, transtension, and 310 

transpression (Figs. 6 and 7). 311 

 312 

Figure 6. Results of the analogue modelling experiment. 3D view of the last deformation step after 7 cm of total 313 

deformation with areas of uplift and subsidence highlighted by a colour pattern (red= uplift; blue=subsidence; 314 

green=neutral). Key sections chosen as representative of the overall deformation pattern are also indicated (see close 315 

up views in Fig. 7). Photographs are complemented by laser scan images of the model surfaces observe the total 316 

subsidence and interpreted faults. Blue arrow points north. The left top image shows the initial model setup. 317 
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 318 

 319 

Figure 7. Close-up views of the fault trace in the cross sections presented in Fig.6. The coloured sand packages 320 

represent sediments layers in the upper crust, each layer is 2 mm thick. The upper 3 mm-thick white layer was applied 321 

after the experiment was run to preserve the developed structures. The orange silicone putty represents the lower 322 

crust.  323 

Section 1 represents modelled deformations in the easternmost region. The close-up view of Fig. 324 

7a shows that deformation in this region is accommodated by a main sub vertical strike-slip fault 325 

that cuts through the lower crust (silicon putty), with this fault being bounded by a series of 326 

secondary faults that accommodate transtensive deformation. The normal component of 327 
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displacement taken up by secondary faults is responsible for the development of a narrow 328 

asymmetric depression.  329 

Proceeding towards the basin centre, Section 2 (Fig. 7b) highlights the presence of extensional 330 

deformation (with a minor strike-slip component) that creates a topographic depression cutting 331 

through the entire lower crust putty. The extensional stress generates a wide graben controlled by 332 

a series of domino faults and rollover anticlines. Deformation is mainly controlled by a main fault 333 

located to the north of the basin and dipping towards the south, corresponding to the NAF-N 334 

principal displacement zone. This fault that follows the weak zone with the thinned silicone putty 335 

is bounded by synthetic and antithetic secondary faults (Fig. 7b). 336 

To the west of the model, Section 3 (Fig. 7c) shows folding of the layers to form a gentle 337 

transpressional pop-up structure in the north that is cut by a master fault and by secondary faults. 338 

Here the master fault is almost vertical, and the dextral strike-slip motion appears localised, 339 

analogous to the behaviour of the NAF main track in this region. The lower crust silicone putty 340 

was mobilized by deformation, resulting in a shift and protrusion at the base of the folded layers. 341 

Despite compression and uplift of the layers, the secondary faults show a normal component. 342 

These secondary faults are present only to the south of the master faults, and show decreasing dip 343 

angles and increasing displacements as they approach the master fault (Fig. 7c). 344 

To summarize, the simple initial geometry imposed to the model was able to reproduce a 345 

deformation pattern similar to that observed in the Cinarcik basin, both in term of basin geometries 346 

and the fault deformation patterns observed in the seismic reflection profiles. 347 

 348 

 4.2 Tectonic Strain and Topography 349 
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Segmentation of the NAF-N is responsible for oversteps and changes in fault orientation 350 

at both ends of the Cinarcik basin. To understand how these geometries can influence strain 351 

accumulation and propagation during and after major earthquakes, we analysed the evolution of 352 

the incremental shear rate over the course of our experiment. Fig. 8 shows three phases of 353 

deformation corresponding to increasing displacement along the basal fault. Shear rate, 354 

topographic change and areal strain portray how intensity and velocity of deformation is 355 

distributed and how they are translated into permanent deformation. Elastic strain accumulation is 356 

not directly calculated. 357 

Initially, between 15 and 20 mm of basal displacement, the imposed shear is transferred from the 358 

E-W segments of the fault to the releasing-restraining pair, but deformation there seems much 359 

slower (Fig. 8a). The eastern and the western fault bends are nodal points where the strain rate 360 

dramatically changes. Model topography shows that the releasing-restraining sectors accumulate 361 

most of the permanent deformation, both transtensive and transpressive. The apparent slower 362 

deformation possibly implies a diffuse vs. concentrated shear distribution. However, to the east of 363 

the eastern bend (corresponding to the Tuzla Bend) and to the west of the western bend 364 

(corresponding to the Istanbul Bend) the presence of high relief coincident with shear maxima 365 

suggest that shear stress is not completely transferred, and permanent deformation is a direct effect 366 

of fault segmentation (Fig. 8b). Interestingly, the restraining bend is characterised by 367 

compressional strain at the edge of the uplifted area, while extension is present along the central 368 

fault trace within the compressional region (Fig. 8b, c). The same pattern is visible between 25 and 369 

30 mm of displacement, when the high shear rate of the eastern east-west segment drops at the 370 

releasing bend more than it did earlier, while the shear rate increases more strongly across the 371 

restraining bend (Fig. 8d). Associated with these changes in shear rate, the topographic change 372 
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seems to slowly migrate towards the west (Fig. 8e). The strain pattern of compression and 373 

extension only partially corresponds to the observed uplift and subsidence. In fact, the extensional 374 

deformation on the releasing bend becomes wider and is distributed into three separate zones (Fig. 375 

8f). Between 45 and 50 mm of displacement, more deformation is concentrated throughout the 376 

restraining bend. The maximum shear rate in the releasing bend shifts toward the south and, most 377 

interestingly, is dissipated in the central part (Fig. 8g). 378 

In general, through its evolution, the model shows that most of the shear strain was concentrated 379 

along the two edges of the model Cinarcik segment, with strong drops at its centre. Moreover, it 380 

suggests that maximum topographic changes, i.e., the stronger permanent deformations, are the 381 

result of strain concentrations at the bending points, while the reduction of the shear rate along the 382 

releasing and restraining bends might be the result of strain diffusion (Fig. 8a). The equivalent of 383 

the Cinarcik segment shows that slow deformation corresponds to topographic uplift, but 384 

compression only marks the edge of the uplifted area. In contrast, extension and subsidence above 385 

the releasing bend is accommodated by a narrow asymmetric depression (Fig. 8b, e, h).  386 

 387 

 388 
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Figure 8. Comparison of shear rate, topographic change, and areal strain during three phases of the 390 

progressive deformation: between 15-20 mm (a,b,c); 25-30 mm (d,e,f); and 45-50 mm (g,h,i), of 391 

displacement. Shear rate unit is 1/m, areal strain is dimensionless (m/m). In the figure panels, blue refers 392 

to low shear rates, negative topographic changes and compression, while red refers to high shear rates, 393 

positive topographic changes and extension, respectively. See text for details.  394 

5. Discussion 395 

5.1. Experimental limitations 396 

Before exploring how the analogue models correlate with marine geological/geophysical data, we 397 

should underline their possible limitations. First of all, a typical limiting factor in sandbox 398 

modelling is the lack of fluids permeating the “experimental” crust, both in host rock pores and 399 

localized within shear zones. It is known that pore fluid pressure is a major factor that shapes 400 

deformation patterns and fault activity in nature (e.g., Chester et al., 1993). In our case, being the 401 

Cinarcik fault segment below sea water, fluid percolation could play a key role in reducing the 402 

effective stress along the fault. Other significant oversimplifications in the sandbox experiments 403 

are also their lack of a geothermal gradient, of mineral reactions constraining rock rheology 404 

variations, and of an isostatic and flexural response to tectonic deformation. A specific feature of 405 

most experiments that simulate strike-slip faulting is localization of the master shear zone at a 406 

sharp boundary between nondeformable and mobile basal plates. In our model, we used a 2 mm-407 

thick silicone layer, scaled to the relative thickness of the viscous lower crust as suggested by 408 

Kende et al. (2017). The thickness and viscosity of this layer controls how efficiently basal 409 

displacement is transferred to the shallower crust.  Crustal heterogeneities were also not 410 

incorporated into the model, and this should be considered when comparing the experiments to 411 

nature. The experimental crust is, in fact, assumed to be mechanically homogeneous, without 412 
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heterogeneities or inheritances that might influence deformation patterns. For example, 413 

heterogeneities in the crust deformed by the NAF system have been proposed to play an important 414 

role in strain localization (LePichon et al., 2016). Moreover, our model does not include the effects 415 

of sedimentation, while in nature the Cinarcik Basin has 4-6 km of sedimentary infill that is likely 416 

to consist of Pliocene-Quaternary syn-kinematic sediments (Carton et al., 2007). Finally, the shape 417 

of the master strike-slip right-lateral fault system in the experiments is simplified with respect to 418 

nature (Fig. 4a). 419 

In this study, where the strain accumulation was directly linked along different segments 420 

of the fault, another limitation is the lack of distinction between elastic and anelastic deformation. 421 

Since we are dealing with restraining and releasing bends, topographic changes are able to record 422 

permanent deformations, as well as their intensity and nature, while this would not be possible in 423 

a pure strike-slip kinematic environment. Given the above, the purpose of our modelling was not 424 

to exactly reproduce the geometries of the real world, but rather to verify whether a simple 425 

geometry imposed as an initial condition in the model was able to account for the strain distribution 426 

observed along this complex tectonic system. 427 

 428 

5.2 Bending points as stress barriers: comparison between the model and the natural case 429 

The analogue experiment, with a releasing and restraining bend pair along a segmented 430 

transform fault, shows that the bending points represent indeed a “transition” in terms of the strain 431 

rate and character of the observed deformation pattern. The model shows relatively “slow” shear 432 

along the releasing and restraining bend pair. In contrast, the eastern and western east-west parallel 433 

segments, with “pure” strike-slip displacements, are characterised by relatively high shear rates. 434 

Despite their slower shear rate, the topographic response on the releasing and restraining pairs is 435 
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significant, with the generation of subsidence and uplift over wide areas, and with the generation 436 

of high morphological gradients (Fig. 8h). In the model counterpart to the extending Cinarcik 437 

segment, for example, strain partitioning results in the formation of a basin, i.e., a permanent 438 

topographic depression. So, since strain is able to be transferred from the eastern pure strike-slip 439 

segment to the depocenter of the basin, the bending point cannot be considered a stress barrier, but 440 

rather a point where strain spreads out and diffuses. This characteristic seems to increase with the 441 

amount of displacement up to the centre of the extending Cinarcik segment, where differences 442 

across surrounding structures are not measurable (Fig. 8g). Nevertheless, the total strain in this 443 

region may still be constant. In fact, the areal strain pattern in our model shows that deformation 444 

involves a wider region compared to the pure strike-slip segment to the east of Tuzla Bend, and 445 

that deformation increases in the area characterised by negligible strain rate (Fig. 8i). Interestingly, 446 

this area in the model corresponds to one of the most debated areas of the Sea of Marmara, where 447 

both fault kinematic and strain accumulation along the faults is discussed, as it is considered the 448 

next segment that will rupture after the Izmit 1999 event, in the assumed westward-migrating 449 

earthquake sequence (Parsons, 2000; H. Ferrari et al., 2001; Uçarkuş et al., 2011; Bohnhoff et al., 450 

2013). Most studies agree that the strike-slip motion characterising the eastern part of the NAF 451 

before entering the Gulf of Izmit, changes into transtension as it reaches the Cinarcik basin (Armijo 452 

et al., 2002; Le Pichon et al., 2003; Carton et al., 2007). This interpretation is also confirmed by 453 

the analysis of seismic reflection profiles presented in this paper, clearly showing the transition 454 

from a focused, mostly strike-slip shear east to the eastern bending point (Section A-A’ in Fig. 3), 455 

to the wider mostly normal shear in the centre of the basin (Section B-B’ in Figure 3). This 456 

observation is supported by the experimental results that indicate a transition from concentrated to 457 

diffuse shear, but not to the presence of a barrier to the westward propagation of strain.  458 
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Further extrapolation of our results would suggest that seismic slip occurring to the east of the 459 

bend would increase elastic strain accumulation on the adjacent segment to the west, but this strain 460 

might be partitioned over a wide area. Our experiments are not able to discriminate whether strain 461 

could be dissipated through aseismic creep or small seismic events. Subsidence might be facilitated 462 

because complete elastic rebound in normal faults is inhibited by gravity, so that permanent 463 

deformation accumulates with time (Carton 2003; Hirn 2003; Seeber et al., 2004; Pondard et al., 464 

2007). The experiments suggest that if elastic strain is involved, it accumulates at a slower rate in 465 

transtensional faults than in strike-slip segments. Therefore, the normal faulting at the edges of the 466 

Cinarcik basin might involve several seismic cycles of the adjacent strike-slip fault segment to 467 

reach a critical stress state. This would imply significative differences in seismic cycles between 468 

the Izmit and Cinarcik segments of the NAF. Thus, if the Tuzla Bend is able to transfer shear stress 469 

towards the west, it appears that it would be distributed into several fault strands, affecting the 470 

earthquake magnitudes and recurrence time intervals along the Cinarcik segment, that would be 471 

less effective in accumulating and releasing tectonic loads in comparison to the Izmit segment. 472 

Many geological and geodetic observations document evidence of the impact of fault bends and 473 

associated folding on earthquake cycles (Suppe, 1983; Shaw et al., 2005; Sathiakumar et al., 2020). 474 

In the case of San Andreas Fault, slip partitioning because of the restraining Big Bend and the 475 

loading of buried faults below the Los Angeles metropolitan area might have an impact on 476 

earthquake cycles (Li & Liu, 2007; Li et al., 2009; Daout et al., 2016). Similarly, the Lebanese 477 

restraining bend along the Dead Sea Fault Zone seems to be responsible for partitioned crustal 478 

deformation into NNE-SSW strike slip faults and regional WNW-ESE crustal shortening that 479 

involves distinct sets of earthquakes in different striking faults (Gomez et al., 2007).  480 

 481 
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5.3 The compressive deformations of the NW edge of the Cinarcik Basin 482 

The NW edge of the Cinarcik basin is the site of a topographic high characterized by 483 

evidence of folding and compressive deformation. To highlight this pattern, we combined the 484 

morphobathymetric map of the Cinarcik basin area (slope map in the background) with the 485 

elevation map resulting from the analogue model at the end of the experiment (Fig. 9). Scaling 486 

between the two representations was carried out by using as a reference the position and length of 487 

the NAF-N principal deformation zone. The transtensional deformation pattern of the model, 488 

characterized by negative topography (the blue colour in the topographic change panel in Fig. 8), 489 

overlaps with the deepest portion of the Cinarcik basin, while the red pattern, highlighting the 490 

generation of positive relief in a region of overall compressive deformation in Fig. 8, is 491 

concentrated immediately to the west of the Istanbul Bend. We note that the geometrical conditions 492 

imposed to the model, although very simple, account surprisingly well for the observed regional 493 

deformation pattern, both in its nature and scaled magnitudes. However, since bathymetry can be 494 

affected by surficial processes (gravitative instability, erosion, currents, sediment deposition, etc.) 495 

rather than deformation caused by deep-seated faults, the comparison between the model and the 496 

nature of deformation should consider the subsurface images, such as seismic reflection profiles 497 

described in paragraph 2.1. 498 

 499 

 500 
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 501 

Figure 9. Superposition of morphobathymetry (slope map in background) and elevation map resulting from analogue 502 

modelling (red=uplift; blue=subsidence; green= neutral). Morphobathymetric data are from Le Pichon et al., (2001). 503 

White solid lines mark fault segments constituting the principal deformation zone of the NAF, while red lines indicate 504 

secondary normal faults. Position of seismic sections shown in Fig.3 is also indicated (white dashed lines). 505 

 506 

Starting from the east, both the model and geophysical data show a narrow through resulting from 507 

a sub-vertical trace of the fault (Figs. 2, 7a). In the model, in fact, the northern boundary fault of 508 

the basin is steeply dipping, which correlated well with the geometry of the fault at the margin of 509 

(Carton et al., 2007). Moving to the west, in the centre of the Cinarcik Basin, the features imaged 510 

along the seismic profiles and the model show similar deformation patterns (Fig. 3b and Fig. 7b), 511 

with an important component of extension being the characteristic of this segment of the fault (Fig. 512 

9). The seismic profile shows that the change in dip orientation of the major fault plays a key role 513 

in the morphology of the basin, that becomes wide and deep, but with asymmetric slope angles. 514 

The model shows that this change is compatible with a small – 30° - diversion of the trace of the 515 
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main fault. The resulting morphology of the basin is also well matched, with the northern side of 516 

the basin steeper and therefore more prone to gravitational instability of sediments than the 517 

opposite side.  518 

Finally, compressional deformation characterizes the western half of the Cinarcik basin to the west 519 

of the so-called Istanbul Bend (Fig. 2). In both the model and real world, the western half of the 520 

depression becomes narrower and shallower towards the west. The model also correlates well with 521 

the NE-SW trending morphobathymetric uplift of the Central High. The orientation of the main 522 

fault changes again to a vertical trace in both the model and the Cinarcik basin (Fig. 7c). The 523 

comparison between experimental results and seismic interpretations carried out on available 524 

seismic lines strengthens the idea that a restraining bend adjacent to a releasing bend with a 525 

difference of ~10° in orientation might produce a change in width of the basin, a topographic high 526 

with the characteristics observed in the NW Cinarcik basin, and changes in fault orientations as 527 

observed along the tectonic boundary (Fig. 7c). This would support the idea that the formation of 528 

the Central High with its ~400m relief may be controlled by the interaction of the restraining bend 529 

and the master fault at depth. The model also suggests that this relief may be related to the 530 

characteristics of the fault at depth, where the lower crust appears to be deformed and mobilized 531 

by the fault and by flower style branching faults cut the entire crust. 532 

6. Conclusions 533 

The Cinarcik basin, a tectonic depression along the North Anatolian Fault in the Sea of Marmara, 534 

is bounded in its northern edge by a seismogenic fault that connects the Istanbul metropolitan area 535 

to the Izmit fault segment which ruptured in 1999 during a Mw 7.4 earthquake. We successfully 536 

reproduced tectonic deformations in this area with a simple analogue model characterised by a 537 

velocity discontinuity imposed at its base by a moving basal plate that has an edge profile which 538 
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reproduces the shape of the principal displacement zone of the North-Anatolian Fault in this sector. 539 

As displacements are slowly applied at the base of the model, a first principal shear zone forms 540 

along the velocity discontinuity, with associated growth of horst and graben deformation patterns 541 

above the restraining and releasing bend segments, respectively. The model layout is able to 542 

reproduce the main characteristics of the Cinarcik basin, both in terms of its fault kinematics and 543 

morphology. This led us to analyze the transfer of stress between the different fault segments. We 544 

propose that the Izmit segment can transfer strain to the Cinarcik segment, as most probably 545 

happened after the 1999 earthquake. However, the partitioning of deformation from strike-slip to 546 

transtension, moving from the Izmit to the Cinarcik segment, may induce slower strain 547 

accumulation in this latter, resulting in a longer seismic-cycle for earthquakes of similar 548 

magnitude. This conclusion might suggest a general delay for earthquakes occurring on the 549 

Cinarcik segment that will be eventually triggered by tectonic loading from the east. Our results 550 

also suggest that most of deformation observed along the North-Anatolian Fault between the 551 

rupture termination of the Izmit 1999 earthquake and the Istanbul metropolitan area is controlled 552 

by the change in geometry of the fault segments. In particular, compressive deformation observed 553 

at the connection between the Cinarcik and the Central High segments was reproduced in the 554 

model by imposing a small - 10° - sharp change in the relative orientations of the segments. We 555 

suggest that this change in orientation could reflect the presence of inherited geological 556 

heterogeneities cut by the NAF along the complex suture that constitutes this margin, particularly 557 

in the Sea of Marmara region. 558 
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