152 research outputs found

    Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra‐Andaman earthquake

    Get PDF
    International audience[1] Mantle rheology is one of the essential, yet least understood, material properties of our planet, controlling the dynamic processes inside the Earth's mantle and the Earth's response to various forces. With the advent of GRACE satellite gravity, measurements of mass displacements associated with many processes are now available. In the case of mass displacements related to postseismic deformation, these data may provide new constraints on the mantle rheology. We consider the postseismic deformation due to the M w = 9.2 Sumatra 26 December 2004 and M w = 8.7 Nias 28 March 2005 earthquakes. Applying wavelet analyses to enhance those local signals in the GRACE time varying geoids up to September 2007, we detect a clear postseismic gravity signal. We supplement these gravity variations with GPS measurements of postseismic crustal displacements to constrain postseismic relaxation processes throughout the upper mantle. The observed GPS displacements and gravity variations are well explained by a model of visco-elastic relaxation plus a small amount of afterslip at the downdip extension of the coseismically ruptured fault planes. Our model uses a 60 km thick elastic layer above a viscoelastic asthenosphere with Burgers body rheology. The mantle below depth 220 km has a Maxwell rheology. Assuming a low transient viscosity in the 60–220 km depth range, the GRACE data are best explained by a constant steady state viscosity throughout the ductile portion of the upper mantle (e.g., 60–660 km). This suggests that the localization of relatively low viscosity in the asthenosphere is chiefly in the transient viscosity rather than the steady state viscosity. We find a 8.10 18 Pa s mantle viscosity in the 220–660 km depth range. This may indicate a transient response of the upper mantle to the high amount of stress released by the earthquakes. To fit the remaining misfit to the GRACE data, larger at the smaller spatial scales, cumulative afterslip of about 75 cm at depth should be added over the period spanned by the GRACE models. It produces only small crustal displacements. Our results confirm that satellite gravity data are an essential complement to ground geodetic and geophysical networks in order to understand the seismic cycle and the Earth's inner structure

    Constraints on the geometry of the subducted Gorda Plate from converted phases generated by local earthquakes

    Get PDF
    Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 126(2), (2021): e2020JB019962, https://doi.org/10.1029/2020JB019962.The largest slip in great megathrust earthquakes often occurs in the 10–30 km depth range, yet seismic imaging of the material properties in this region has proven difficult. We utilize a dense onshore‐offshore passive seismic dataset from the southernmost Cascadia subduction zone where seismicity in the mantle of the subducted Gorda Plate produces S‐to‐P and P‐to‐S conversions generated within a few km of the plate interface. These conversions typically occur in the 10–20 km depth range at either the top or bottom of a ∌5 km thick layer with a high Vp/Vs that we infer to be primarily the subducted crust. We use their arrival times and amplitudes to infer the location of the top and bottom of the subducted crust as well as the velocity contrasts across these discontinuities. Comparing with both the Slab1.0 and the updated Slab2 interface models, the Slab2 model is generally consistent with the converted phases, while the Slab1.0 model is 1–2 km deeper in the 2–20 km depth range and ∌6–8 km too deep in the 10–20 km depth range between 40.25°N and 40.4°N. Comparing the amplitudes of the converted phases to synthetics for simplified velocity structures, the amplitude of the converted phases requires models containing a ∌5 km thick zone with at least a ∌10%–20% reduction in S wave velocity. Thus, the plate boundary is likely contained within or at the top of this low velocity zone, which potentially indicates a significant porosity and fluid content within the seismogenic zone.This work is funded by National Science Foundation Award Numbers EAR‐1520690.2021-07-2

    Limitations of rupture forecasting exposed by instantaneously triggered earthquake doublet

    Get PDF
    Earthquake hazard assessments and rupture forecasts are based on the potential length of seismic rupture and whether or not slip is arrested at fault segment boundaries. Such forecasts do not generally consider that one earthquake can trigger a second large event, near-instantaneously, at distances greater than a few kilometers. Here we present a geodetic and seismological analysis of a magnitude 7.1 intra-continental earthquake that occurred in Pakistan in 1997. We find that the earthquake, rather than a single event as hitherto assumed, was in fact an earthquake doublet: initial rupture on a shallow, blind 2 reverse fault was followed just 19 seconds later by a second rupture on a separate reverse fault 50 km away. Slip on the second fault increased the total seismic moment by half, and doubled both the combined event duration and the area of maximum ground shaking. We infer that static Coulomb stresses at the initiation location of the second earthquake were probably reduced as a result of the first. Instead, we suggest that a dynamic triggering mechanism is likely, although the responsible seismic wave phase is unclear. Our results expose a flaw in earthquake rupture forecasts that disregard cascading, multiple-fault ruptures of this type

    Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone

    Get PDF
    The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or ‘stable’ plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load

    Clues from joint inversion of tsunami and geodetic data of the 2011 Tohoku-oki earthquake

    Get PDF
    The 2011 Tohoku-oki (Mw 9.1) earthquake is so far the best-observed megathrust rupture, which allowed the collection of unprecedented offshore data. The joint inversion of tsunami waveforms (DART buoys, bottom pressure sensors, coastal wave gauges, and GPS-buoys) and static geodetic data (onshore GPS, seafloor displacements obtained by a GPS/acoustic combination technique), allows us to retrieve the slip distribution on a non-planar fault. We show that the inclusion of near-source data is necessary to image the details of slip pattern (maximum slip ~48 m, up to ~35 m close to the Japan trench), which generated the large and shallow seafloor coseismic deformations and the devastating inundation of the Japanese coast. We investigate the relation between the spatial distribution of previously inferred interseismic coupling and coseismic slip and we highlight the importance of seafloor geodetic measurements to constrain the interseismic coupling, which is one of the key-elements for long-term earthquake and tsunami hazard assessment

    Dislocation Creep of Olivine: Backstress Evolution Controls Transient Creep at High Temperatures

    Get PDF
    Transient creep occurs during geodynamic processes that impose stress changes on rocks at high temperatures. The transient is manifested as evolution in the viscosity of the rocks until steady-state flow is achieved. Although several phenomenological models of transient creep in rocks have been proposed, the dominant microphysical processes that control such behavior remain poorly constrained. To identify the intragranular processes that contribute to transient creep of olivine, we performed stress-reduction tests on single crystals of olivine at temperatures of 1250–1300°C. In these experiments, samples undergo time‐dependent reverse strain after the stress reduction. The magnitude of reverse strain is ~10-3 and increases with increasing magnitude of the stress reduction. High-angular resolution electron backscatter diffraction analyses of deformed material reveal lattice curvature and heterogeneous stresses associated with the dominant slip system. The mechanical and microstructural data are consistent with transient creep of the single crystals arising from accumulation and release of backstresses among dislocations. These results allow the dislocation‐glide component of creep at high temperatures to be isolated, and we use these data to calibrate a flow law for olivine to describe the glide component of creep over a wide temperature range. We argue that this flow law can be used to estimate both transient creep and steady‐state viscosities of olivine, with the transient evolution controlled by the evolution of the backstress. This model is able to predict variability in the style of transient (normal versus inverse) and the load-relaxation response observed in previous work.LH and DW acknowledge support from the Natural Environment Research Council, grant NE/M000966/1, LH and CT acknowledge support from the Natural Environment Research Council, grant 1710DG008/JC4, and DW acknowledges support from the Netherlands Organisation for Scientific Research, User Support Programme Space Research, grant ALWGO.2018.038, and startup funds from Utrecht University. LH recognizes funds used to develop the uniaxial apparatus from the John Fell Fund at the University of Oxford
    • 

    corecore