2,822 research outputs found

    The Development of Models for Carbon Dioxide Reduction Technologies for Spacecraft Air Revitalization

    Get PDF
    Through the respiration process, humans consume oxygen (O2) while producing carbon dioxide (CO2) and water (H2O) as byproducts. For long term space exploration, CO2 concentration in the atmosphere must be managed to prevent hypercapnia. Moreover, CO2 can be used as a source of oxygen through chemical reduction serving to minimize the amount of oxygen required at launch. Reduction can be achieved through a number of techniques. NASA is currently exploring the Sabatier reaction, the Bosch reaction, and co- electrolysis of CO2 and H2O for this process. Proof-of-concept experiments and prototype units for all three processes have proven capable of returning useful commodities for space exploration. All three techniques have demonstrated the capacity to reduce CO2 in the laboratory, yet there is interest in understanding how all three techniques would perform at a system level within a spacecraft. Consequently, there is an impetus to develop predictive models for these processes that can be readily rescaled and integrated into larger system models. Such analysis tools provide the ability to evaluate each technique on a comparable basis with respect to processing rates. This manuscript describes the current models for the carbon dioxide reduction processes under parallel developmental efforts. Comparison to experimental data is provided were available for verification purposes

    Master crossover behavior of parachor correlations for one-component fluids

    Full text link
    The master asymptotic behavior of the usual parachor correlations, expressing surface tension σ\sigma as a power law of the density difference ρLρV\rho_{L}-\rho_{V} between coexisting liquid and vapor, is analyzed for a series of pure compounds close to their liquid-vapor critical point, using only four critical parameters (βc)1(\beta_{c})^{-1}, αc\alpha_{c}, ZcZ_{c} and YcY_{c}, for each fluid. ... The main consequences of these theoretical estimations are discussed in the light of engineering applications and process simulations where parachor correlations constitute one of the most practical method for estimating surface tension from density and capillary rise measurements

    Real-Gas Effects and Phase Separation in Underexpanded Jets at Engine-Relevant Conditions

    Full text link
    A numerical framework implemented in the open-source tool OpenFOAM is presented in this work combining a hybrid, pressure-based solver with a vapor-liquid equilibrium model based on the cubic equation of state. This framework is used in the present work to investigate underexpanded jets at engine-relevant conditions where real-gas effects and mixture induced phase separation are probable to occur. A thorough validation and discussion of the applied vapor-liquid equilibrium model is conducted by means of general thermodynamic relations and measurement data available in the literature. Engine-relevant simulation cases for two different fuels were defined. Analyses of the flow field show that the used fuel has a first order effect on the occurrence of phase separation. In the case of phase separation two different effects could be revealed causing the single-phase instability, namely the strong expansion and the mixing of the fuel with the chamber gas. A comparison of single-phase and two-phase jets disclosed that the phase separation leads to a completely different penetration depth in contrast to single-phase injection and therefore commonly used analytical approaches fail to predict the penetration depth.Comment: Preprint submitted to AIAA Scitech 2018, Kissimmee, Florid

    Suppressed Decays of D_s^+ Mesons to Two Pseudoscalar Mesons

    Get PDF
    Using data collected near the Ds*+ Ds- peak production energy Ecm = 4170 MeV by the CLEO-c detector, we study the decays of Ds+ mesons to two pseudoscalar mesons. We report on searches for the singly-Cabibbo-suppressed Ds+ decay modes K+ eta, K+ eta', pi+ K0S, K+ pi0, and the isospin-forbidden decay mode Ds+ to pi+ pi0. We normalize with respect to the Cabibbo-favored Ds+ modes pi+ eta, pi+ eta', and K+ K0S, and obtain ratios of branching fractions: Ds+ to K+ eta / Ds+ to pi+ eta = (8.9 +- 1.5 +- 0.4)%, Ds+ to K+ eta' / Ds+ to pi+ eta' = (4.2 +- 1.3 +- 0.3)%, Ds+ to pi+ K0S / Ds+ to K+ K0S = (8.2 +- 0.9 +- 0.2)%, Ds+ to K+ pi0 / Ds+ to K+ K0S = (5.0 +- 1.2 +- 0.6)%, and Ds+ to pi+ pi0 / Ds+ to K+ K0S < 4.1% at 90% CL, where the uncertainties are statistical and systematic, respectively.Comment: 9 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2007/, Submitted to PR

    Bovine oocytes in secondary follicles grow and acquire meiotic competence in severe combined immunodeficient mice

    Get PDF
    A rigorous methodology is developed that addresses numerical and statistical issues when developing group contribution (GC) based property models such as regression methods, optimization algorithms, performance statistics, outlier treatment, parameter identifiability, and uncertainty of the prediction. The methodology is evaluated through development of a GC method for the prediction of the heat of combustion (Δ<i>H</i><sub>c</sub><sup>o</sup>) for pure components. The results showed that robust regression lead to best performance statistics for parameter estimation. The bootstrap method is found to be a valid alternative to calculate parameter estimation errors when underlying distribution of residuals is unknown. Many parameters (first, second, third order group contributions) are found unidentifiable from the typically available data, with large estimation error bounds and significant correlation. Due to this poor parameter identifiability issues, reporting of the 95% confidence intervals of the predicted property values should be mandatory as opposed to reporting only single value prediction, currently the norm in literature. Moreover, inclusion of higher order groups (additional parameters) does not always lead to improved prediction accuracy for the GC-models; in some cases, it may even increase the prediction error (hence worse prediction accuracy). However, additional parameters do not affect calculated 95% confidence interval. Last but not least, the newly developed GC model of the heat of combustion (Δ<i>H</i><sub>c</sub><sup>o</sup>) shows predictions of great accuracy and quality (the most data falling within the 95% confidence intervals) and provides additional information on the uncertainty of each prediction compared to other Δ<i>H</i><sub>c</sub><sup>o</sup> models reported in literature

    Measurement of B(Ds+ -->ell+ nu) and the Decay Constant fDs From 600/pb of e+e- Annihilation Data Near 4170 MeV

    Full text link
    We examine e+e- --> Ds^-D_s^{*+} and Ds^{*-}Ds^{+} interactions at 4170 MeV using the CLEO-c detector in order to measure the decay constant fDs with good precision. Previously our measurements were substantially higher than the most precise lattice based QCD calculation of (241 +/- 3) MeV. Here we use the D_s^+ --> ell^+ nu channel, where the ell^+ designates either a mu^+ or a tau^+, when the tau^+ --> pi^+ anti-nu. Analyzing both modes independently, we determine B(D_s^+ --> mu^+ nu)= 0.565 +/- 0.045 +/- 0.017)%, and B(D_s^+ --> mu^+ nu)= (6.42 +/- 0.81 +/- 0.18)%. We also analyze them simultaneously to find an effective value of B^{eff}(D_s^+ --> mu^+ nu)= (0.591 +/- 0.037 +/- 0.018)% and fDs=(263.3 +/- 8.2 +/- 3.9) MeV. Combining with the CLEO-c value determined independently using D_s^+ --> tau^+ nu, tau^+ --> e^+ nu anti-nu decays, we extract fDs=(259.5 +/- 6.6 +/- 3.1) MeV. Combining with our previous determination of B(D^+ --> mu^+ nu), we extract the ratio fDs/fD+=1.26 +/- 0.06 +/- 0.02. No evidence is found for a CP asymmetry between Gamma(D_s^+ --> mu^+\nu) and \Gamma(D_s^- --> mu^- nu); specifically the fractional difference in rates is measured to be (4.8 +/- 6.1)%. Finally, we find B(D_s^+ --> e^+ nu) < 1.2x10^{-4} at 90% confidence level.Comment: 26 pages, 16 figure

    Using giant African pouched rats to detect tuberculosis in human sputum samples: 2010 findings

    Get PDF
    Giant African pouched rats previously have detected tuberculosis (TB) in human sputum samples in which the presence of TB was not initially detected by smear microscopy. Operant conditioning principles were used to train these rats to indicate TB-positive samples. In 2010, rats trained in this way evaluated 26,665 sputum samples from 12,329 patients. Microscopy performed at DOTS centers found 1,671 (13.6%) of these patients to be TB-positive. Detection rats identified 716 additional TB-positive patients, a 42.8% increase in new-case detection. These previously unreported data, which extend to over 20,000 the number of patients evaluated by pouched rats in simulated second-line screening, suggest that the rats can be highly valuable in that capacity

    Determination of the D0 -> K+pi- Relative Strong Phase Using Quantum-Correlated Measurements in e+e- -> D0 D0bar at CLEO

    Full text link
    We exploit the quantum coherence between pair-produced D0 and D0bar in psi(3770) decays to study charm mixing, which is characterized by the parameters x and y, and to make a first determination of the relative strong phase \delta between doubly Cabibbo-suppressed D0 -> K+pi- and Cabibbo-favored D0bar -> K+pi-. We analyze a sample of 1.0 million D0D0bar pairs from 281 pb^-1 of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV. By combining CLEO-c measurements with branching fraction input and time-integrated measurements of R_M = (x^2+y^2)/2 and R_{WS} = Gamma(D0 -> K+pi-)/Gamma(D0bar -> K+pi-) from other experiments, we find \cos\delta = 1.03 +0.31-0.17 +- 0.06, where the uncertainties are statistical and systematic, respectively. In addition, by further including external measurements of charm mixing parameters, we obtain an alternate measurement of \cos\delta = 1.10 +- 0.35 +- 0.07, as well as x\sin\delta = (4.4 +2.7-1.8 +- 2.9) x 10^-3 and \delta = 22 +11-12 +9-11 degrees.Comment: 37 pages, also available through http://www.lns.cornell.edu/public/CLNS/2007/. Incorporated referee's comment

    Confirmation of the Y(4260) Resonance Production in ISR

    Get PDF
    Using 13.3 fb^-1 of e+e- collision data taken in the Upsilon(1S-4S) region with the CLEO III detector at the CESR collider, a search has been made for the new resonance Y(4260) recently reported by the BaBar Collaboration. The production of Y(4260) in initial state radiation (ISR), and its decay into pi+pi-J/psi are confirmed. A good quality fit to our data is obtained with a single resonance. We determine M(Y(4260))=(4284+17-16(stat)+-4(syst)) MeV/c^2, Gamma(Y(4260))=(73+39-25(stat)+-5(syst)) MeV/c^2, and Gamma_ee(Y(4260))xBr(Y(4260)->pi+pi-J/psi)=(8.9+3.9-3.1(stat)+-1.9(syst)) eV/c^2.Comment: 8 pages postscript,also available through http://www.lns.cornell.edu/public/CLNS/2006/, Submitted to PRD (Rapid Comm.
    corecore