39 research outputs found

    The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cells

    Get PDF
    2D Ruddlesden–Popper perovskite (RPP) solar cells have excellent environmental stability. However, the power conversion efficiency (PCE) of RPP cells remains inferior to 3D perovskite-based cells. Herein, 2D (CH(CH)NH)(CHNH)PbI perovskite cells with different numbers of [PbI] sheets (n = 2–4) are analyzed. Photoluminescence quantum yield (PLQY) measurements show that nonradiative open-circuit voltage (V) losses outweigh radiative losses in materials with n > 2. The n = 3 and n = 4 films exhibit a higher PLQY than the standard 3D methylammonium lead iodide perovskite although this is accompanied by increased interfacial recombination at the top perovskite/C interface. This tradeoff results in a similar PLQY in all devices, including the n = 2 system where the perovskite bulk dominates the recombination properties of the cell. In most cases the quasi-Fermi level splitting matches the device V within 20 meV, which indicates minimal recombination losses at the metal contacts. The results show that poor charge transport rather than exciton dissociation is the primary reason for the reduction in fill factor of the RPP devices. Optimized n = 4 RPP solar cells had PCEs of 13% with significant potential for further improvements

    Hybrid Rylene Arrays via Combination of Stille Coupling and C-H Transformation as High Performance Electron Transport Materials

    No full text
    Hybrid rylene arrays have been prepared via a combination of Stille coupling and C−H transformation. The ability to extend the π system along the equatorial axis of rylenes not only leads to broadened light absorption but also increases the electron affinity, which can facilitate electron injection and transport with ambient stability

    Stannyl Derivatives of Naphthalene Diimides and Their Use in Oligomer Synthesis

    No full text
    Abstract2-Stannyl and 2,6-distannyl naphthalene diimides (NDIs) can be synthesized through the palladium-catalyzed reaction of the appropriate bromo derivatives with hexabutylditin. The utility of these precursors in palladium catalyzed cross-coupling reactions is demonstrated by the synthesis of bi- and ter-NDI derivatives, UV - vis, cyclic voltammetry, and n-channel organic field-effect transistor data for which are compared to those of the monomeric parent NDI. © 2012 American Chemical Society
    corecore