130 research outputs found

    Genomic Analysis and Prediction within a US Public Collaborative Winter Wheat Regional Testing Nursery

    Get PDF
    The development of inexpensive, whole-genome profiling enables a transition to allele-based breeding using genomic prediction models. These models consider alleles shared between lines to predict phenotypes and select new lines based on estimated breeding values. This approach can leverage highly unbalanced datasets that are common to breeding programs. The Southern Regional Performance Nursery (SRPN) is a public nursery established by the USDA–ARS in 1931 to characterize performance and quality of near-release wheat (Triticum aestivum L.) varieties from breeding programs in the US Central Plains. New entries are submitted annually and can be re-entered only once. The trial is grown at \u3e30 locations each year and lines are evaluated for grain yield, disease resistance, and agronomic traits. Overall genetic gain is measured across years by including common check cultivars for comparison. We have generated whole-genome profiles via genotyping-bysequencing (GBS) for 939 SPRN entries dating back to 1992 to explore the potential use of the nursery as a genomic selection (GS) training population (TP). The GS prediction models across years (average r = 0.33) outperformed year-to-year phenotypic correlation for yield (r = 0.27) for a majority of the years evaluated, suggesting that genomic selection has the potential to outperform low heritability selection on yield in these highly variable environments. We also examined the predictability of programs using both program-specific and whole-set TPs. Generally, the predictability of a program was similar with both approaches. These results suggest that wheat breeding programs can collaboratively leverage the immense datasets that are generated from regional testing networks

    A Field-Based Analysis of Genetic Improvement for Grain Yield in Winter Wheat Cultivars Developed in the US Central Plains from 1992 to 2014

    Get PDF
    Progress in plant breeding programs is the result of creating and selecting new lines with novel allele combinations that perform better than their parents. This year-on-year improvement is known as genetic gain and is a function of genetic diversity, selection accuracy, selection intensity, and selection cycle time. To estimate the gain in wheat (Triticum aestivum L.) breeding in the US Central Plains, lines that were submitted to the collaborative Southern Regional Performance Nursery (SRPN) between 1992 and 2014 were grown in a common nursery for 3 yr at two locations in a single-replicate augmented block design. Moderate to high broad-sense heritability was observed for plant height (H2 = 0.88), heading date (H2 = 0.79), and grain yield (H2 = 0.41). From the common grow-out, genetic gain for yield over the time period was estimated at 1.1% yr−1, whereas individual breeding program genetic gain varied between 0.3 and 1.9% yr−1. Increases in Kansas state on-farm yields during the same period showed a nonsignificant trend of 0.13% yr−1 with large year-to-year variation. These results suggest that although progress is being made in US Central Plains breeding programs, a yield gap remains that could be attributable to genetic progress not being realized in on-farm production

    Spiked GBS: a unified, open platform for single marker genotyping and whole-genome profiling

    Get PDF
    Citation: Rife, T. W., Wu, S. Y., Bowden, R. L., & Poland, J. A. (2015). Spiked GBS: a unified, open platform for single marker genotyping and whole-genome profiling. Bmc Genomics, 16, 7. https://doi.org/10.1186/s12864-015-1404-9Background: In plant breeding, there are two primary applications for DNA markers in selection: 1) selection of known genes using a single marker assay (marker-assisted selection; MAS); and 2) whole-genome profiling and prediction (genomic selection; GS). Typically, marker platforms have addressed only one of these objectives. Results: We have developed spiked genotyping-by-sequencing (sGBS), which combines targeted amplicon sequencing with reduced representation genotyping-by-sequencing. To minimize the cost of targeted assays, we utilize a small percent of sequencing capacity available in runs of GBS libraries to "spike" amplified targets of a priori alleles tagged with a different set of unique barcodes. This open platform allows multiple, single-target loci to be assayed while simultaneously generating a whole-genome profile. This dual-genotyping approach allows different sets of samples to be evaluated for single markers or whole genome-profiling. Here, we report the application of sGBS on a winter wheat panel that was screened for converted KASP markers and newly-designed markers targeting known polymorphisms in the leaf rust resistance gene Lr34. Conclusions: The flexibility and low-cost of sGBS will enable a range of applications across genetics research. Specifically in breeding applications, the sGBS approach will allow breeders to obtain a whole-genome profile of important individuals while simultaneously targeting specific genes for a range of selection strategies across the breeding program

    An evaluation of genotyping by sequencing (GBS) to map the <em>Breviaristatum-e (ari-e)</em> locus in cultivated barley

    Get PDF
    ABSTRACT: We explored the use of genotyping by sequencing (GBS) on a recombinant inbred line population (GPMx) derived from a cross between the two-rowed barley cultivar ‘Golden Promise’ (ari-e.GP/Vrs1) and the six-rowed cultivar ‘Morex’ (Ari-e/vrs1) to map plant height. We identified three Quantitative Trait Loci (QTL), the first in a region encompassing the spike architecture gene Vrs1 on chromosome 2H, the second in an uncharacterised centromeric region on chromosome 3H, and the third in a region of chromosome 5H coinciding with the previously described dwarfing gene Breviaristatum-e (Ari-e). BACKGROUND: Barley cultivars in North-western Europe largely contain either of two dwarfing genes; Denso on chromosome 3H, a presumed ortholog of the rice green revolution gene OsSd1, or Breviaristatum-e (ari-e) on chromosome 5H. A recessive mutant allele of the latter gene, ari-e.GP, was introduced into cultivation via the cv. ‘Golden Promise’ that was a favourite of the Scottish malt whisky industry for many years and is still used in agriculture today. RESULTS: Using GBS mapping data and phenotypic measurements we show that ari-e.GP maps to a small genetic interval on chromosome 5H and that alternative alleles at a region encompassing Vrs1 on 2H along with a region on chromosome 3H also influence plant height. The location of Ari-e is supported by analysis of near-isogenic lines containing different ari-e alleles. We explored use of the GBS to populate the region with sequence contigs from the recently released physically and genetically integrated barley genome sequence assembly as a step towards Ari-e gene identification. CONCLUSIONS: GBS was an effective and relatively low-cost approach to rapidly construct a genetic map of the GPMx population that was suitable for genetic analysis of row type and height traits, allowing us to precisely position ari-e.GP on chromosome 5H. Mapping resolution was lower than we anticipated. We found the GBS data more complex to analyse than other data types but it did directly provide linked SNP markers for subsequent higher resolution genetic analysis

    Resistance to Gray Leaf Spot of Maize: Genetic Architecture and Mechanisms Elucidated through Nested Association Mapping and Near-Isogenic Line Analysis

    Get PDF
    Citation: Benson, J. M., Poland, J. A., Benson, B. M., Stromberg, E. L., & Nelson, R. J. (2015). Resistance to Gray Leaf Spot of Maize: Genetic Architecture and Mechanisms Elucidated through Nested Association Mapping and Near-Isogenic Line Analysis. Plos Genetics, 11(3), 23. https://doi.org/10.1371/journal.pgen.1005045Gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is one of the most important diseases of maize worldwide. The pathogen has a necrotrophic lifestyle and no major genes are known for GLS. Quantitative resistance, although poorly understood, is important for GLS management. We used genetic mapping to refine understanding of the genetic architecture of GLS resistance and to develop hypotheses regarding the mechanisms underlying quantitative disease resistance (QDR) loci. Nested association mapping (NAM) was used to identify 16 quantitative trait loci (QTL) for QDR to GLS, including seven novel QTL, each of which demonstrated allelic series with significant effects above and below the magnitude of the B73 reference allele. Alleles at three QTL, qGLS1.04, qGLS2.09, and qGLS4.05, conferred disease reductions of greater than 10%. Interactions between loci were detected for three pairs of loci, including an interaction between iqGLS4.05 and qGLS7.03. Near-isogenic lines (NILs) were developed to confirm and fine-map three of the 16 QTL, and to develop hypotheses regarding mechanisms of resistance. qGLS1.04 was fine-mapped from an interval of 27.0 Mb to two intervals of 6.5 Mb and 5.2 Mb, consistent with the hypothesis that multiple genes underlie highly significant QTL identified by NAM. qGLS2.09, which was also associated with maturity (days to anthesis) and with resistance to southern leaf blight, was narrowed to a 4-Mb interval. The distance between major leaf veins was strongly associated with resistance to GLS at qGLS4.05. NILs for qGLS1.04 were treated with the C. zeae-maydis toxin cercosporin to test the role of host-specific toxin in QDR. Cercosporin exposure increased expression of a putative flavin-monooxygenase (FMO) gene, a candidate detoxification-related gene underlying qGLS1.04. This integrated approach to confirming QTL and characterizing the potential underlying mechanisms advances the understanding of QDR and will facilitate the development of resistant varieties

    Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat

    Get PDF
    Citation: Rutkoski, J., . . . Singh, R. (2016). Canopy Temperature and Vegetation Indices from High-Throughput Phenotyping Improve Accuracy of Pedigree and Genomic Selection for Grain Yield in Wheat. G3-Genes Genomes Genetics, 6(9), 2799-2808. https://doi.org/10.1534/g3.116.032888Genomic selection can be applied prior to phenotyping, enabling shorter breeding cycles and greater rates of genetic gain relative to phenotypic selection. Traits measured using high-throughput phenotyping based on proximal or remote sensing could be useful for improving pedigree and genomic prediction model accuracies for traits not yet possible to phenotype directly. We tested if using aerial measurements of canopy temperature, and green and red normalized difference vegetation index as secondary traits in pedigree and genomic best linear unbiased prediction models could increase accuracy for grain yield in wheat, Triticum aestivum L., using 557 lines in five environments. Secondary traits on training and test sets, and grain yield on the training set were modeled as multivariate, and compared to univariate models with grain yield on the training set only. Cross validation accuracies were estimated within and across-environment, with and without replication, and with and without correcting for days to heading. We observed that, within environment, with unreplicated secondary trait data, and without correcting for days to heading, secondary traits increased accuracies for grain yield by 56% in pedigree, and 70% in genomic prediction models, on average. Secondary traits increased accuracy slightly more when replicated, and considerably less when models corrected for days to heading. In across-environment prediction, trends were similar but less consistent. These results show that secondary traits measured in high-throughput could be used in pedigree and genomic prediction to improve accuracy. This approach could improve selection in wheat during early stages if validated in early-generation breeding plots

    Genetic Diversity and Population Structure of F3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing

    Get PDF
    The availability of information on the genetic diversity and population structure in wheat (Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F3:6) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon’s information index (I) = 0.494, diversity index (h) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity (I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars

    Wheat quality improvement at CIMMYT and the use of genomic selection on it

    Get PDF
    Citation: Guzman, C., Pena, R. J., Singh, R., Autrique, E., Dreisigacker, S., Crossa, J., . . . Battenfield, S. (2016). Wheat quality improvement at CIMMYT and the use of genomic selection on it. Applied and Translational Genomics, 11, 3-8. https://doi.org/10.1016/j.atg.2016.10.004The International Center for Maize and Wheat Improvement (CIMMYT) leads the Global Wheat Program, whose main objective is to increase the productivity of wheat cropping systems to reduce poverty in developing countries. The priorities of the program are high grain yield, disease resistance, tolerance to abiotic stresses (drought and heat), and desirable quality. The Wheat Chemistry and Quality Laboratory has been continuously evolving to be able to analyze the largest number of samples possible, in the shortest time, at lowest cost, in order to deliver data on diverse quality traits on time to the breeders formaking selections for advancement in the breeding pipeline. The participation of wheat quality analysis/selection is carried out in two stages of the breeding process: evaluation of the parental lines for new crosses and advanced lines in preliminary and elite yield trials. Thousands of lines are analyzed which requires a big investment in resources. Genomic selection has been proposed to assist in selecting for quality and other traits in breeding programs. Genomic selection can predict quantitative traits and is applicable to multiple quantitative traits in a breeding pipeline by attaining historical phenotypes and adding high-density genotypic information. Due to advances in sequencing technology, genome-wide single nucleotide polymorphism markers are available through genotyping-by-sequencing at a cost conducive to application for genomic selection. At CIMMYT, genomic selection has been applied to predict all of the processing and end-use quality traits regularly tested in the spring wheat breeding program. These traits have variable levels of prediction accuracy, however, they demonstrated that most expensive traits, dough rheology and baking final product, can be predicted with a high degree of confidence. Currently it is being explored how to combine both phenotypic and genomic selection to make more efficient the genetic improvement for quality traits at CIMMYT spring wheat breeding program. (C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

    Implementing within‐cross genomic prediction to reduce oat breeding costs

    Get PDF
    A barrier to the adoption of genomic prediction in small breeding programs is the initial cost of genotyping material. Although decreasing, marker costs are usually higher than field trial costs. In this study we demonstrate the utility of stratifying a narrow‐base biparental oat population genotyped with a modest number of markers to employ genomic prediction at early and later generations. We also show that early generation genotyping data can reduce the number of lines for later phenotyping based on selections of siblings to progress. Using sets of small families selected at an early generation could enable the use of genomic prediction for adaptation to multiple target environments at an early stage in the breeding program. In addition, we demonstrate that mixed marker data can be effectively integrated to combine cheap dominant marker data (including legacy data) with more expensive but higher density codominant marker data in order to make within generation and between lineage predictions based on genotypic information. Taken together, our results indicate that small programs can test and initiate genomic predictions using sets of stratified, narrow‐base populations and incorporating low density legacy genotyping data. This can then be scaled to include higher density markers and a broadened population base
    corecore