99 research outputs found

    A resolution to the blue whiting (Micromesistius poutassou) population paradox?

    Get PDF
    We provide the strongest evidence to date supporting the existence of two independent blue whiting (Micromesistius poutassou (Risso, 1827)) populations in the North Atlantic. In spite of extensive data collected in conjunction with the fishery, the population structure of blue whiting is poorly understood. On one hand, genetic, morphometric, otolith and drift modelling studies point towards the existence of two populations, but, on the other hand, observations of adult distributions point towards a single population. A paradox therefore arises in attempting to reconcile these two sets of information. Here we analyse 1100 observations of blue whiting larvae from the Continuous Plankton Recorder (CPR) from 1948–2005 using modern statistical techniques. We show a clear spatial separation between a northern spawning area, in the Rockall Trough, and a southern one, off the Porcupine Seabight. We further show a difference in the timing of spawning between these sites of at least a month, and meaningful differences in interannual variability. The results therefore support the two-population hypothesis. Furthermore, we resolve the paradox by showing that the acoustic observations cited in support of the single-population model are not capable of resolving both populations, as they occur too late in the year and do not extend sufficiently far south to cover the southern population: the confusion is the result of a simple observational artefact. We conclude that blue whiting in the North Atlantic comprises two populations

    Statistical mechanics of strong and weak point vortices in a cylinder

    Full text link
    The motion of one-hundred point vortices in a circular cylinder is simulated numerically and compared with theoretical predictions based on statistical mechanics. The novel aspect considered here is that the vortices have greatly different circulation strengths. As envisaged by Onsager, such an arrangement leads to a substantial amplification of statistical trends such as the preferred clustering of the strong vortices in either same-signed or oppositely-signed pairs, depending on the overall energy level. A microcanonical ensemble based on the conserved total energy E and angular momentum M for the whole vortex system is then used, in which the few strong vortices are treated as a subsystem in contact with a reservoir composed of the many weak vortices. It is shown that allowing for the finite size of this reservoir is essential in order to predict the statistics of the strong vortices accurately. Notably, this goes beyond the standard canonical ensemble with positive or negative temperature. A certain approximation is then shown to allow a single random sample of uniformly distributed vortex configurations to be used to predict the strong vortex statistics for all possible values of E and M. Detailed predictions for distribution functions are then made for comparison with three simulated cases of near-zero M and low, neutral, or high E. It is found that the statistical mechanics predictions compare remarkably well with the numerical results, including a prediction of vortex accumulation at the cylinder wall for low values of E.Comment: In press, Physics of Fluid

    Singularities Motion Equations in 2-Dimensional Ideal Hydrodynamics of Incompressible Fluid

    Full text link
    In this paper, we have obtained motion equations for a wide class of one-dimensional singularities in 2-D ideal hydrodynamics. The simplest of them, are well known as point vortices. More complicated singularities correspond to vorticity point dipoles. It has been proved that point multipoles of a higher order (quadrupoles and more) are not the exact solutions of two-dimensional ideal hydrodynamics. The motion equations for a system of interacting point vortices and point dipoles have been obtained. It is shown that these equations are Hamiltonian ones and have three motion integrals in involution. It means the complete integrability of two-particle system, which has a point vortex and a point dipole.Comment: 9 page

    Vortex solutions in axial or chiral coupled non-relativistic spinor- Chern-Simons theory

    Get PDF
    The interaction of a spin 1/2 particle (described by the non-relativistic "Dirac" equation of L\'evy-Leblond) with Chern-Simons gauge fields is studied. It is shown, that similarly to the four dimensional spinor models, there is a consistent possibility of coupling them also by axial or chiral type currents. Static self dual vortex solutions together with a vortex-lattice are found with the new couplings.Comment: Plain TEX, 10 page

    The impact of environmental variability on Atlantic mackerel Scomber scombrus larval abundance to the west of the British Isles

    Get PDF
    The value of the Continuous Plankton Recorder (CPR) fish larvae dataset, with its extensive spatio-temporal coverage, has been recently demonstrated with studies on long-term changes over decadal scales in the abundance and distribution of fish larvae in relation to physical and biological factors in the North Sea. We used a similar approach in the west and southwest area of the UK shelf and applied a principal component analysis (PCA) using 7 biotic and abiotic parameters, combined with Hierarchical Cluster Analysis (HCA), to investigate the impact of environmental changes in the west and southwest area of the UK shelf on mackerel larvae during the period 1960–2004. The analysis revealed 3 main periods of time (1960–1968; 1969–1994; 1995–2004) reflecting 3 different ecosystem states. The results suggest a transition from an ecosystem characterized by low temperature, high salinity, high abundances of zooplankton and the larger phytoplankton groups, to a system characterized by higher temperature, lower salinities, lower abundances of zooplankton and larger phytoplankton and higher abundances of the small phytoplankton species. Analysis revealed a very weak positive correlation between the Second principal component and mackerel larvae yearly abundance, attributed to the North Atlantic Oscillation (NAO). The results presented here are in broad accord with recent investigations that link climatic variability and dynamics of mackerel reproduction. However, the growing body of literature that documents statistical correlations between environment and mackerel needs to be supplemented by local process studies, to gain more insight and to be able to predict mackerel response to climate change scenarios. Utilising the strength of the CPR dataset, namely its unique temporal coverage, in an analysis where other data (such as egg surveys) are drawn in to compensate for the spatial issues could prove to be the way forward

    Velocity field distributions due to ideal line vortices

    Get PDF
    We evaluate numerically the velocity field distributions produced by a bounded, two-dimensional fluid model consisting of a collection of parallel ideal line vortices. We sample at many spatial points inside a rigid circular boundary. We focus on ``nearest neighbor'' contributions that result from vortices that fall (randomly) very close to the spatial points where the velocity is being sampled. We confirm that these events lead to a non-Gaussian high-velocity ``tail'' on an otherwise Gaussian distribution function for the Eulerian velocity field. We also investigate the behavior of distributions that do not have equilibrium mean-field probability distributions that are uniform inside the circle, but instead correspond to both higher and lower mean-field energies than those associated with the uniform vorticity distribution. We find substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E (http://pre.aps.org/) in May 200

    Statistical mechanics approach to some problems in conformal geometry

    Full text link
    A weak law of large numbers is established for a sequence of systems of N classical point particles with logarithmic pair potential in \bbR^n, or \bbS^n, n\in \bbN, which are distributed according to the configurational microcanonical measure δ(E−H)\delta(E-H), or rather some regularization thereof, where H is the configurational Hamiltonian and E the configurational energy. When N→∞N\to\infty with non-extensive energy scaling E=N^2 \vareps, the particle positions become i.i.d. according to a self-consistent Boltzmann distribution, respectively a superposition of such distributions. The self-consistency condition in n dimensions is some nonlinear elliptic PDE of order n (pseudo-PDE if n is odd) with an exponential nonlinearity. When n=2, this PDE is known in statistical mechanics as Poisson-Boltzmann equation, with applications to point vortices, 2D Coulomb and magnetized plasmas and gravitational systems. It is then also known in conformal differential geometry, where it is the central equation in Nirenberg's problem of prescribed Gaussian curvature. For constant Gauss curvature it becomes Liouville's equation, which also appears in two-dimensional so-called quantum Liouville gravity. The PDE for n=4 is Paneitz' equation, and while it is not known in statistical mechanics, it originated from a study of the conformal invariance of Maxwell's electromagnetism and has made its appearance in some recent model of four-dimensional quantum gravity. In differential geometry, the Paneitz equation and its higher order n generalizations have applications in the conformal geometry of n-manifolds, but no physical applications yet for general n. Interestingly, though, all the Paneitz equations have an interpretation in terms of statistical mechanics.Comment: 17 pages. To appear in Physica

    Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents

    Full text link
    Motivated by the statistical mechanics description of stationary 2D-turbulence, for a sinh-Poisson type equation with asymmetric nonlinearity, we construct a concentrating solution sequence in the form of a tower of singular Liouville bubbles, each of which has a different degeneracy exponent. The asymmetry parameter γ∈(0,1]\gamma\in(0,1] corresponds to the ratio between the intensity of the negatively rotating vortices and the intensity of the positively rotating vortices. Our solutions correspond to a superposition of highly concentrated vortex configurations of alternating orientation; they extend in a nontrivial way some known results for γ=1\gamma=1. Thus, by analyzing the case γ≠1\gamma\neq1 we emphasize specific properties of the physically relevant parameter γ\gamma in the vortex concentration phenomena
    • …
    corecore