A weak law of large numbers is established for a sequence of systems of N
classical point particles with logarithmic pair potential in \bbR^n, or
\bbS^n, n\in \bbN, which are distributed according to the configurational
microcanonical measure δ(E−H), or rather some regularization thereof,
where H is the configurational Hamiltonian and E the configurational energy.
When N→∞ with non-extensive energy scaling E=N^2 \vareps, the
particle positions become i.i.d. according to a self-consistent Boltzmann
distribution, respectively a superposition of such distributions. The
self-consistency condition in n dimensions is some nonlinear elliptic PDE of
order n (pseudo-PDE if n is odd) with an exponential nonlinearity. When n=2,
this PDE is known in statistical mechanics as Poisson-Boltzmann equation, with
applications to point vortices, 2D Coulomb and magnetized plasmas and
gravitational systems. It is then also known in conformal differential
geometry, where it is the central equation in Nirenberg's problem of prescribed
Gaussian curvature. For constant Gauss curvature it becomes Liouville's
equation, which also appears in two-dimensional so-called quantum Liouville
gravity. The PDE for n=4 is Paneitz' equation, and while it is not known in
statistical mechanics, it originated from a study of the conformal invariance
of Maxwell's electromagnetism and has made its appearance in some recent model
of four-dimensional quantum gravity. In differential geometry, the Paneitz
equation and its higher order n generalizations have applications in the
conformal geometry of n-manifolds, but no physical applications yet for general
n. Interestingly, though, all the Paneitz equations have an interpretation in
terms of statistical mechanics.Comment: 17 pages. To appear in Physica