We evaluate numerically the velocity field distributions produced by a
bounded, two-dimensional fluid model consisting of a collection of parallel
ideal line vortices. We sample at many spatial points inside a rigid circular
boundary. We focus on ``nearest neighbor'' contributions that result from
vortices that fall (randomly) very close to the spatial points where the
velocity is being sampled. We confirm that these events lead to a non-Gaussian
high-velocity ``tail'' on an otherwise Gaussian distribution function for the
Eulerian velocity field. We also investigate the behavior of distributions that
do not have equilibrium mean-field probability distributions that are uniform
inside the circle, but instead correspond to both higher and lower mean-field
energies than those associated with the uniform vorticity distribution. We find
substantial differences between these and the uniform case.Comment: 21 pages, 9 figures. To be published in Physical Review E
(http://pre.aps.org/) in May 200