10 research outputs found

    Steigerung der Matrixproduktion von humanen artikulÀren Chondrozyten durch eine Kombination aus adenoviraler Transduktion, Expansion im Monolayer und 3D-Kultur in Alginat

    Get PDF
    Die Kombination aus adenoviraler Transduktion und Expansion im Monolayer mit anschließender 3D-Kultivierung in Alginat, wie bei der autologen Chondrozytentransplantation, fĂŒhrte bei humanen artikulĂ€ren Chondrozyten (ohne Osteoarthrose-Score bzw. mit niedrigem Osteoarthrose-Score) zu einer gesteigerten Expression anaboler Gene und zu einer vermehrten Matrixproduktion. FĂŒr den Erfolg einer adenoviralen Gentherapie ist keine oder nur eine geringe Immunantwort des Patienten eine entscheidende Voraussetzung. Neutralisations- und Infektionstests zeigten, dass der Adenovirustyp 34 am geeignetesten ist.Treatment of human articular chondrocytes (healthy or with low osteoarthritis score) with a combination of adenoviral transduction, monolayer expansion and cultivation in alginate beads, as during autologous chondrocyte implantation, led to an increased expression of anabolic genes and an augmented matrix production. The success of adenoviral gene therapy is dependent on the patient's immune response to the virus - no or only slight reaction is required. Infection and neutralisation test were carried out with various types of adenvirus, the most effective to be shown was adenovirus type 34

    Patterns of Spatial Variation of Assemblages Associated with Intertidal Rocky Shores: A Global Perspective

    Get PDF
    Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses

    Simulating Climate Change Impacts on Hybrid-Poplar and Black Locust Short Rotation Coppices

    No full text
    In Brandenburg, north-eastern Germany, climate change is associated with increasing annual temperatures and decreasing summer precipitation. Appraising short rotation coppices (SRCs), given their long-time planning horizon demands for systematic assessments of woody biomass production under a considerable spectrum of climate change prospects. This paper investigates the prospective growth sensitivity of poplar and black locust SRCs, established in Brandenburg to a variety of weather conditions and long-term climate change, from 2015 to 2054, by a combined experimental and simulation study. The analysis employed (i) a biophysical, process-based model to simulate the daily tree growth and (ii) 100 realisations of the statistical regional climate model STAR 2K. In the last growing period, the simulations showed that the assumed climate change could lead to a decrease in the woody biomass of about 5 Mg ha−1 (18%) for poplar and a decrease of about 1.7 Mg ha−1 (11%) for black locust trees with respect to the median observed in the reference period. The findings corroborate the potential tree growth vulnerability to prospective climatic changes, particularly to changes in water availability and underline the importance of coping management strategies in SRCs for forthcoming risk assessments and adaptation scenarios

    The transplant cohort of the German center for infection research (DZIF Tx-Cohort): study design and baseline characteristics

    No full text
    Infectious complications are the major cause of morbidity and mortality after solid organ and stem cell transplantation. To better understand host and environmental factors associated with an increased risk of infection as well as the effect of infections on function and survival of transplanted organs, we established the DZIF Transplant Cohort, a multicentre prospective cohort study within the organizational structure of the German Center for Infection Research. At time of transplantation, heart-, kidney-, lung-, liver-, pancreas- and hematopoetic stem cell- transplanted patients are enrolled into the study. Follow-up visits are scheduled at 3, 6, 9, 12 months after transplantation, and annually thereafter; extracurricular visits are conducted in case of infectious complications. Comprehensive standard operating procedures, web-based data collection and monitoring tools as well as a state of the art biobanking concept for blood, purified PBMCs, urine, and faeces samples ensure high quality of data and biosample collection. By collecting detailed information on immunosuppressive medication, infectious complications, type of infectious agent and therapy, as well as by providing corresponding biosamples, the cohort will establish the foundation for a broad spectrum of studies in the field of infectious diseases and transplant medicine. By January 2020, baseline data and biosamples of about 1400 patients have been collected. We plan to recruit 3500 patients by 2023, and continue follow-up visits and the documentation of infectious events at least until 2025. Information about the DZIF Transplant Cohort is available at https://www.dzif.de/en/working-group/transplant-cohort

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore