3,977 research outputs found

    Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots

    Full text link
    A systematic variation of the exciton fine-structure splitting with quantum dot size in single InAs/GaAs quantum dots grown by metal-organic chemical vapor deposition is observed. The splitting increases from -80 to as much as 520 μ\mueV with quantum dot size. A change of sign is reported for small quantum dots. Model calculations within the framework of eight-band k.p theory and the configuration interaction method were performed. Different sources for the fine-structure splitting are discussed, and piezoelectricity is pinpointed as the only effect reproducing the observed trend.Comment: 5 pages, 5 figure

    Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots

    Get PDF
    A systematic study of the impact of annealing on the electronic properties of single InAs/GaAs quantum dots (QDs) is presented. Single QD cathodoluminescence spectra are recorded to trace the evolution of one and the same QD over several steps of annealing. A substantial reduction of the excitonic fine-structure splitting upon annealing is observed. In addition, the binding energies of different excitonic complexes change dramatically. The results are compared to model calculations within eight-band k.p theory and the configuration interaction method, suggesting a change of electron and hole wave function shape and relative position.Comment: 4 pages, 4 figure

    Enhanced transmission versus localization of a light pulse by a subwavelength metal slit: Can the pulse have both characteristics?

    Full text link
    The existence of resonant enhanced transmission and collimation of light waves by subwavelength slits in metal films [for example, see T.W. Ebbesen et al., Nature (London) 391, 667 (1998) and H.J. Lezec et al., Science, 297, 820 (2002)] leads to the basic question: Can a light be enhanced and simultaneously localized in space and time by a subwavelength slit? To address this question, the spatial distribution of the energy flux of an ultrashort (femtosecond) wave-packet diffracted by a subwavelength (nanometer-size) slit was analyzed by using the conventional approach based on the Neerhoff and Mur solution of Maxwell's equations. The results show that a light can be enhanced by orders of magnitude and simultaneously localized in the near-field diffraction zone at the nm- and fs-scales. Possible applications in nanophotonics are discussed.Comment: 5 figure

    Higher dimensional abelian Chern-Simons theories and their link invariants

    Full text link
    The role played by Deligne-Beilinson cohomology in establishing the relation between Chern-Simons theory and link invariants in dimensions higher than three is investigated. Deligne-Beilinson cohomology classes provide a natural abelian Chern-Simons action, non trivial only in dimensions 4l+34l+3, whose parameter kk is quantized. The generalized Wilson (2l+1)(2l+1)-loops are observables of the theory and their charges are quantized. The Chern-Simons action is then used to compute invariants for links of (2l+1)(2l+1)-loops, first on closed (4l+3)(4l+3)-manifolds through a novel geometric computation, then on R4l+3\mathbb{R}^{4l+3} through an unconventional field theoretic computation.Comment: 40 page

    An exploration of the factors involved in lifestyle decisions in young people with cystic fibrosis using decision making vignettes, and the role of perceived risk in infection

    Get PDF
    This study explored the factors involved in lifestyle decision making in young people with Cystic Fibrosis, specifically the role of infection risk. Certain pathogens present a high risk of infection to people with Cystic Fibrosis, and can significantly affect their health. It is therefore important that people with the disease attempt to minimise the risk of contracting these infections. There was limited literature relating specifically to infection risk and decision making in this population. However, this study drew on decision making literature from other areas, with regard to engaging in risktaking behaviours. The study employed a vignette methodology, presenting a series of lifestyle situations to eight participants and asking them to think aloud whilst deciding whether to engage in the activity. This was followed by a brief interview. An interview was also conducted with a Consultant Microbiologist, offering a detailed understanding of the level of risk presented in each vignette. Thematic Analysis was used to interpret the results, highlighting a number of important themes. Participants frequently chose to engage in activities that would present an increased risk of infection. It was often important to find a balance between maintaining their health and engaging in a fulfilling life. However, at times, participants lacked an adequate understanding of the level of risk or the nature of the infections to make an informed decision. Implications for future research and clinical practice are discussed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The HERMES Back Drift Chambers

    Get PDF
    The tracking system of the HERMES spectrometer behind the bending magnet consists of two pairs of large planar 6-plane drift chambers. The design and performance of these chambers is described. This description comprises details on the mechanical and electronical design, information about the gas mixture used and its properties, results on alignment, calibration, resolution, and efficiencies, and a discussion of the experience gained through the first three years of operation.Comment: 21 pages, LaTex, 16 figures include

    The size of the proton - closing in on the radius puzzle

    Get PDF
    We analyze the recent electron-proton scattering data from Mainz using a dispersive framework that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a continued fraction analysis of these data. We find a small electric proton charge radius, r_E^p = 0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analyses. We also extract the proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on continued fractions modified, conclusions on the proton charge radius unchanged, version accepted for publication in European Physical Journal
    corecore