138 research outputs found

    First ice core records of NO3− stable isotopes from Lomonosovfonna, Svalbard

    Get PDF
    Samples from two ice cores drilled at Lomonosovfonna, Svalbard, covering the period 1957–2009, and 1650–1995, respectively, were analyzed for NO3− concentrations, and NO3− stable isotopes (δ15N and δ18O). Post-1950 δ15N has an average of (−6.9 ± 1.9) ‰, which is lower than the isotopic signal known for Summit, Greenland, but agrees with values observed in recent Svalbard snow and aerosol. Pre-1900 δ15N has an average of (4.2 ± 1.6) ‰ suggesting that natural sources, enriched in the 15 N-isotope, dominated before industrialization. The post-1950 δ18O average of (75.1 ± 4.1) ‰ agrees with data from low and polar latitudes, suggesting similar atmospheric NOy (NOy = NO + NO2 + HNO3) processing pathways. The combination of anthropogenic source δ15N and transport isotope effect was estimated as −29.1 ‰ for the last 60 years. This value is below the usual range of NOx (NOx = NO + NO2) anthropogenic sources which is likely the result of a transport isotope effect of –32 ‰. We suggest that the δ15N recorded at Lomonosovfonna is influenced mainly by fossil fuel combustion, soil emissions and forest fires; the first and second being responsible for the marked decrease in δ15N observed in the post-1950s record with soil emissions being associated to the decreasing trend in δ15N observed up to present time, and the third being responsible for the sharp increase of δ15N around 2000

    Longitudinal interrelationships between dental fear and dental attendance among adult Finns in 2000-2011

    Get PDF
    Objectives: The aim of this longitudinal study was to investigate causal pathways among as well as interrelationships between changes in dental fear and dental attendance in a nationally representative sample of adult Finns aged 19 years or older in 2000, with 11 years of follow‐up.Methods: Data from the Health 2000 and 2011 Surveys (BRIF8901) in Finland were used. The Health 2000 survey used a stratified two‐stage cluster sampling design (N=9742). Of the participants in 2000, 7964 were eligible and invited to participate in 2011. Of the participants in 2011 (n=5806), 3,631 (63%) responded to both dental fear and attendance questions in both years. Both fear and attendance were assessed using single questions and dichotomized. The background variables included were age, gender and education. Path analysis and logistic regression models were used.Results: Dental fear led to nonhabitual use of dental services rather than vice versa (−0.07 to 0.04 vs. 0.00). When confounders were considered, in both age groups (29‐39 years and 40+ years) an increase in fear predicted nonhabitual dental attendance. This association was stronger among the younger age group (OR = 4.91) than among those aged 40 years and older (OR = 2.88). Among the younger age group, improved dental fear decreased the risk of nonhabitual dental attendance (OR = 0.16), while among older age group, stable fear increased the risk of nonhabitual dental attendance (OR = 2.33).Conclusions: Dental fear causes nonhabitual dental attendance, and decreasing dental fear increases habitual attendance. Oral health personnel should adapt measures to prevent and treat dental fear.</p

    Enhancement of Kondo effect in quantum dots with an even number of electrons

    Full text link
    We investigate the Kondo effect in a quantum dot with almost degenerate spin-singlet and triplet states for an even number of electrons. We show that the Kondo temperature as a function of the energy difference between the states Delta reaches its maximum around Delta=0 and decreases with increasing Delta. The Kondo effect is thus enhanced by competition between singlet and triplet states. Our results explain recent experimental findings. We evaluate the linear conductance in the perturbative regime.Comment: 5 pages; Phys. Rev. Lett., in pres

    Nitrate stable isotopes and major ions in snow and ice samples from four Svalbard sites

    Get PDF
    Increasing reactive nitrogen (N-r) deposition in the Arctic may adversely impact N-limited ecosystems. To investigate atmospheric transport of N-r to Svalbard, Norwegian Arctic, snow and firn samples were collected from glaciers and analysed to define spatial and temporal variations (1 10 years) in major ion concentrations and the stable isotope composition (delta N-15 and delta O-18) of nitrate (NO3-) across the archipelago. The delta N-15(NO3-) and delta O-18(NO3-) averaged -4 parts per thousand and 67 parts per thousand in seasonal snow (2010-11) and -9 parts per thousand and 74 parts per thousand in firn accumulated over the decade 2001-2011. East-west zonal gradients were observed across the archipelago for some major ions (non-sea salt sulphate and magnesium) and also for delta N-15(NO3-) and delta O-18(NO3-) in snow, which suggests a different origin for air masses arriving in different sectors of Svalbard. We propose that snowfall associated with long-distance air mass transport over the Arctic Ocean inherits relatively low delta N-15(NO3-) due to in-transport N isotope fractionation. In contrast, faster air mass transport from the north-west Atlantic or northern Europe results in snowfall with higher delta N-15(NO3-) because in-transport fractionation of N is then time-limited

    Tunneling through a multigrain system: deducing the sample topology from the nonlinear conductance

    Full text link
    We study a current transport through a system of a few grains connected with tunneling links. The exact solution is given for an arbitrarily connected double-grain system with a shared gate in the framework of the orthodox model. The obtained result is generalized for multigrain systems with strongly different tunneling resistances. We analyse the large-scale nonlinear conductance and demonstrate how the sample topology can be unambiguously deduced from the spectroscopy pattern (differential conductance versus gate-bias plot). We present experimental data for a multigrain sample and reconstruct the sample topology. A simple selection rule is formulated to distinguish samples with spectral patterns free from spurious disturbance caused by recharging of some grains nearby. As an example, we demonstrate experimental data with additional peaks in the spectroscopy pattern, which can not be attributed to coupling to additional grains. The described approach can be used to judge the sample topology when it is not guaranteed by fabrication and direct imaging is not possible.Comment: 13 pages (including 8 figures

    Kondo resonant spectra in coupled quantum dots

    Full text link
    The Kondo effect in coupled quantum dots is investigated from the viewpoint of transmission spectroscopy using the slave-boson formalism of the Anderson model. The antiferromagnetic spin-spin coupling JJ between the dots is taken into account. Conductance GG through the dots connected in a series is characterized by the competition between the dot-dot tunneling coupling VCV_{C} and the level broadening Δ\Delta in the dots (dot-lead coupling). When VC/Δ<1V_{C}/\Delta < 1, the Kondo resonance is formed between each dot and lead, which is replaced by a spin-singlet state in the dots at low gate voltages. The gate voltage dependence of GG has a sharp peak of 2e2/h2 e^2/h in height in the crossover region between the Kondo and spin-singlet states. The sharp peak of GG survives when the energy levels are different between the dots. When VC/Δ>1V_{C} / \Delta > 1, the "molecular levels" between the Kondo resonant states appear; the Kondo resonant peaks are located below and above the Fermi level in the leads at low gate voltages. The gate voltage dependence of GG has a broad peak, which is robust against JJ. The broad peak splits into two peaks when the energy levels are different, reflecting the formation of the asymmetric molecular levels between the Kondo resonant states.Comment: 21 pages, 8 figures, to appear in Phys. Rev.
    corecore