2,054 research outputs found

    Effect of bonding on the performance of a piezoactuator-based active control system

    Get PDF
    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is studied. A Modified Independent Modal Space Control (MIMSC) method is devised to select the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The presented method accounts for the effects that the piezoelectric actuators and the bonding layers have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the MIMSC method and to demonstrate the effect of the physical and geometrical properties of the bonding layer on the dynamic performance of the actively controlled beams. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general

    A comparison between IMSC, PI and MIMSC methods in controlling the vibration of flexible systems

    Get PDF
    A comparative study is presented between three active control algorithms which have proven to be successful in controlling the vibrations of large flexible systems. These algorithms are: the Independent Modal Space Control (IMSC), the Pseudo-inverse (PI), and the Modified Independent Modal Space Control (MIMSC). Emphasis is placed on demonstrating the effectiveness of the MIMSC method in controlling the vibration of large systems with small number of actuators by using an efficient time sharing strategy. Such a strategy favors the MIMSC over the IMSC method, which requires a large number of actuators to control equal number of modes, and also over the PI method which attempts to control large number of modes with smaller number of actuators through the use of an in-exact statistical realization of a modal controller. Numerical examples are presented to illustrate the main features of the three algorithms and the merits of the MIMSC method

    Challenges in designing an online healthcare platform for personalised patient analytics

    Get PDF
    The growing number and size of clinical medical records (CMRs) represents new opportunities for finding meaningful patterns and patient treatment pathways while at the same time presenting a huge challenge for clinicians. Indeed, CMR repositories share many characteristics of the classical ‘big data’ problem, requiring specialised expertise for data management, extraction, and modelling. In order to help clinicians make better use of their time to process data, they will need more adequate data processing and analytical tools, beyond the capabilities offered by existing general purpose database management systems or database servers. One modelling technique that can readily benefit from the availability of big data, yet remains relatively unexplored is personalised analytics where a model is built for each patient. In this paper, we present a strategy for designing a secure healthcare platform for personalised analytics by focusing on three aspects: (1) data representation, (2) data privacy and security, and (3) personalised analytics enabled by machine learning algorithms

    Optimizing Bone Scaffold Porosity Distributions

    Get PDF
    We consider a simple one-dimensional time-dependent model for bone regeneration in the presence of a bio-resorbable polymer scaffold. Within the framework of the model, we optimize the effective mechanical stiffness of the polymer scaffold together with the regenerated bone matrix. The result of the optimization procedure is a scaffold porosity distribution which maximizes the stiffness of the scaffold-bone system over the regeneration time, such that the propensity for mechanical failure is reduced

    Optimum shape control of flexible beams by piezo-electric actuators

    Get PDF
    The utilization of piezoelectric actuators in controlling the static deformation and shape of flexible beams is examined. An optimum design procedure is presented to enable the selection of the optimal location, thickness and excitation voltage of the piezoelectric actuators in a way that would minimize the deflection of the beam to which these actuators are bonded. Numerical examples are presented to illustrate the application of the developed optimization procedure in minimizing structural deformation of beams using ceramic and polymeric piezoelectric actuators bonded to the beams with a typical bonding agent. The obtained results emphasize the importance of the devised rational produce in designing beam-actuator systems with minimal elastic distortions

    Optimum vibration control of flexible beams by piezo-electric actuators

    Get PDF
    The utilization of piezoelectric actuators in controlling the structural vibrations of flexible beams is examined. A Modified Independent Modal Space Control (MIMSC) method is devised to enable the selection of the optimal location, control gains and excitation voltage of the piezoelectric actuators in a way that would minimize the amplitudes of vibrations of beams to which these actuators are bonded, as well as the input control energy necessary to suppress these vibrations. The developed method accounts for the effects that the piezoelectric actuators have on changing the elastic and inertial properties of the flexible beams. Numerical examples are presented to illustrate the application of the developed MIMSC method in minimizing the structural vibrations of beams of different materials when subjected to different loading and end conditions using ceramic or polymeric piezoelectric actuators. The obtained results emphasize the importance of the devised method in designing more realistic active control systems for flexible beams, in particular, and large flexible structures in general

    Flavonoids as antiviral agents for Enterovirus A71 (EV-A71)

    Get PDF
    Flavonoids are natural biomolecules that are known to be effective antivirals. These biomolecules can act at different stages of viral infection, particularly at the molecular level to inhibit viral growth. Enterovirus A71 (EV-A71), a non-enveloped RNA virus, is one of the causative agents of hand, foot and mouth disease (HFMD), which is prevalent in Asia. Despite much effort, no clinically approved antiviral treatment is available for children suffering from HFMD. Flavonoids from plants serve as a vast reservoir of therapeutically active constituents that have been explored as potential antiviral candidates against RNA and DNA viruses. Here, we reviewed flavonoids as evidence-based natural sources of antivirals against non-picornaviruses and picornaviruses

    Can DMD obtain a scene background in color?

    Get PDF
    A background model describes a scene without any foreground objects and has a number of applications, ranging from video surveillance to computational photography. Recent studies have introduced the method of Dynamic Mode Decomposition (DMD) for robustly separating video frames into a background model and foreground components. While the method introduced operates by converting color images to grayscale, we in this study propose a technique to obtain the background model in the color domain. The effectiveness of our technique is demonstrated using a publicly available Scene Background Initialisation (SBI) dataset. Our results both qualitatively and quantitatively show that DMD can successfully obtain a colored background model
    corecore