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NOMENCLATURE

width of beam and piezo-actuator, m

electric charge constant of piezo-actuator, m/v

distance to neutral axis of composite beam measured from its
lovwer edge, m

Young's modulus of elasticity of piezo-actuator and beanm
respectively, N/

Young's modulus of elasticity of element i of the beam, N/m2
vector of modal forces and moments, N or Nm

vector of external forces and moments, N or Nm

area moment of inertia of actuator, bonding layer and beam about
the neutral axis of the composite beam respectively, n“

area moment of inertia of the element i, ot

mass poment of inertial of the composite beam at node {, kg-m2
stiffness matrix of the element i

overall stiffness matrix of beam-actuator system

length of element i, m

mass of the composite beam at node i, kg

mass matrix of beam-actuator system

external moment acting on ith node of beam, Nm

plezo-electric moment generated by piezo-film, Nm

number of elements of the beanm

thickness of piezo-actuator, bonding layer and beam respectively,

m
modal coordinates of the flexible system

voltage applied across the piezo-electric film, volts



vi external force acting on the ith

element of the beam, N
1 the linear translation of node i, m

Yb,f,s bond, film and beam mass per unit length respectively, kg/m

Greek Letters

R/ factor=1 or zero if actuator is bonded to element i or not
respectively

& deflection of node i, m or rad.

é deflection vector of all nodes of the beam, m or rad.

81 acceleration vector of all nodes of the beam, n/s2 or rad/s?

€ piezo-electric strain in piezo-actuator, m/m

64 angular deflection of node i, rad.

A diagonal matrix of the eigenvalues of the system

01’2’3 bending stresses in piezo-actuator, bonding layer and beam
respectively, N/m2
op piezo-electric stress in actuator, N/m2

¢ modal shape matrix of the eigenvectors of the flexible system



This study deals with the utilization of piezo-electric actuators in
controlling the strucéural vibrations of flexible beams.

A Modified Indepéndent Modal Space Control (MIMSC) method is devised
to select the optimal location, ocontrol gains and excitation voltage of
the piezo-electric actuators in a way that would minimize the amplitudes
of vibrations of beams to which these actuators are bonded, as well as
the input control energy necessary to suppress these vibrations.

The presented method accounts for the effects that the
piezo-electric actuators and the bonding layers have on changing the
elastic and ingrtial properties of the flexible beams.

Numerical examples are presented to illustrate the application of
the MIMSC method and to demonstrate the effect of the physical and
geometrical properties of the bonding layer on the dynamic performance of
the actively controlled beams.

The obtained results emphasize the importance of the devised method
in designing more realistic active control systems for flexible beams, in

particular, and large flexible structures in general.



INTRODUCTIOR

Active vibration control systems are becoming essential and viable
means for minimizing the vibrations of li}ge 1lexible structures which
are intended to provide stable bases for precision pointing in space.

Distinct among the presently available active control systems are
those that rely in their operation on piezo-electric actuators. Such
systems have proven to be experimentally effective in controlling the
vibrations of simple structural elements such as rectangular beams [1-2]
and hollow cylindrical masts [3]. The effectiveness of these systems is
coupled also with the light weight, high force and low power consumption
capabilities .of the piezo-electric actuators [4-8]. These features
rendered this oclass of actuators to be an attractive ocandidate for
controlling atfuctural vibrations.

The present state-of-the-art of this type of actuators has been
limited to the analysis and testing of their characteristics [9-11] as
influenced by their geometrical or operational conditions. A recent
attempt has been made by Baz [12], to select their optimal geometrical
parameters and location which are best suited for a particular structure
subjected to known static loading conditions. The developed synthesis
procedure has proven to be essential to the successful integration of the
actuators into the structure in order to minimize its static deformation.

However, no effort has been done to optimize the control of the
vidbrations of a multi-mode flexible system using a small number of
optimally placed piezo-actuators through the development of efficient and
realistic control algorithm that ensures minimal amplitudes of

oscillation and input control energy.



It is, therefore, the purpose of this study is to devise Quoh an
optimal control method that is based on a modification of the well known
Independent Modal Space Control(IMSC) method [13-15]. The devised method
accounts for the spillover from the controlled ;odes into the
uncontrolled modes due to the use of fewer actuators than the modeled
modes. The developed method incorporates also an optimal placement
procedure that will enable the selection of the optimal location of the
plezo-electric actuators in the struoture in order to guarantee a balance
between the suppression of the amplitudes of vibration and the input
control energy [16].

Furthermore, the developed procedure considers the effect that the
piezo-electric actuators and bonding layers have on changing the elastic
and inertial properties of the structure to which they are bonded to.
Such ci;anses result in modifying the normal modes of the structure one
way or another depending on the physical and geometrical properties of
the actuators and the bonding layers.

In this study, the emphasis will be placed on piezo-electric
actuator-beam systems to illustrate the devised control strategy. But,
without any further modifications, the developed method can be readily

applied to large structures.
THE PIEZO-ELECTRIC ACTUATOR--BEAM SYSTEM

A. GENERAL LAYOUT
Figure (1) shows a general layout of a flexible beam (A) whose
deflection is to be controlled by piezo-electric actuator (B) bonded to

the beam by bonding layer (C). The beam, under consideration, can
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generally be made of several steps which are not necessarily of the same
thickness or the same material. The interfacial nodes between the
different steps can be subjected to external forces, moments or both.
Further, the degrees of freedom of any node can be limited to line;r
translations, angular rotatiqns or restrained completely depending on the
nature of support at the node under consideration.

In this study, the beam is assumed to have rectangular cross section
of oonstant width b and that its tranaverse deflection is due to the
flexural action of the external forces and moments.

In Figure (1), the piezo-electric actuator B is shown bonded to the
element i of the flexible beam to form a composite beam. When an electric
field is applied across the film, then it will expand if the field is,
for example, along the polarization axis of the film and will contract if
.t,he two were out of phase. The expansion or contraction of the film
relative to the beam, by virtue of the piezo-electric effect, creates
longitudinal bending stresses in the composite beam which tend to bend
the beam in a manner very similar to a bimetallic thermostat.

With proper selection, placement and control of the actuator, it
would be possible to generate enough piezo-electric bending stresses to
counter balance the effect of the exciting forces and moments acting on

the beam in a way that minimizes its structural vibrations.

B. MODEL OF AR ACTUATOR-BEAM ELEMENT

Figure (2) shows a schematic drawing of a piezo-film A bonded to an
element B of the flexible beam by bonding layer C.

If a voltage v is applied across the film, a piezo-electric strain

€ is introduced in the film and can be computed from :
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e = (d/t,)0 (1)

where d is the electric charge constant of the film, m/v
ty 1is the thickness of the piezo-electric actuator, m

This strain results in a longitudinal stress o¢ given by :
a = E,(d/t1)‘v (2)

where Eq 1is the Young's modulus of elasticity of the film, N/n2
This, in turn generates a bending moment Mf, around the neutral axis of
the composite beam, given by :
-(tq+t +t3-D)
Mp = [ lop(b%3)dy (3)
-(t2+{3-D)
where t, is the thickness of the bonding layer, m

t3 is the thickness of the beam, m

b is the width of the beam, the bonding layer and the

piezo-film, m

In equation (3), D is the distance of the neutral axis from the lower
edge of the beam which can be determined by considering the force balance

in the longitudinal direction X of the beam, or :

9dA + f[o,dA + fodA = 0O (%)
j; ln j;gnd j;gam
or
-(to+t4-D) -(ts-D) D
Eqb f2 ydy + Ejb f3 ydy + E3bf ydy = 0 (5)
‘(t1+t2+t3-b) -(t2+t3-D) "(t3-D)

where E, is Young's modulus of elasticity of the bonding layer

E3 is Young's modulus of elasticity of the beam



Equation (5) yields the following expression for D :

2 2 2
D = E1t1 +E2t2 +E3t3 ¢2E1t1£tztt3)#232t2t3 (6)
2(Eqt 4Bt p+E3ts)

Equation (2), _(3) and (6) can be combined to determine the bending moment
My generated by the piezo-film on the composite beam as follows :

A¥bRE Sv® (Bt 1 o4Est 1t 3eE b 24 2Eat ot a4Eqts?)

Mp = ---- (1)

2.(E1t1+E2t2*E3t3)

For this composite beam, it can be easily shown [12] that it has a

flexural rigidity (E;I,) given by :
EjIy = Eqly + EpIp + Eglg (8)

where I4, I, and 13 are the area moments of inertia of the film, the
bonding layer and the beam about the neutral axis respectively.

Let us now assume that the composite beam, shown in Figure (2),
extends a length 1; between two nodes (i) and (i+1). Further, it is
assumed that the external forces V; and V, 4 as well as the external
moments M,y and “e1+1 are acting on the beam at nodes i and i+1
respectively. Then, the resulting linear and angular deformations of the
beam y; and 6; as well as Y441 and 014_1 at the nodes i and 1i+1,
respectively, can be related to the loads acting on the element as

follows [17] :

[ v, [ 12 6Ly -12 6Ly | [yg ]
2 2
Meg*Mr | Eylg| 6Ly BLyS 6Ly 2455 16
Vier | Ly [-12 61y 12 6Ly ||y,

2
| Mes+1Mp 6Ly 2?6l ALy | 0141] (9)




Equation (9) can be rewritten as :
Fy = K484 (10)

where F; 1is the resultant forces and moments vector acting on the beam
elenment i, N

K; 1s the stiffness matrix of the composite beam element i, N/m

81 is the deflection vector of the nodes bounding the beanm

element, n

Equation (9) constitutes the basic finite element model that relates
the external loads (V and M) and piezo-electric moments (Hf) to the
deflections (y and @) of the element as a function of its elastic and
inertial parameters.

The equation can be equally used for any element of the beam whether
it has a piezo-film bonded to it or not. In the latter case, My is set to
zero and flexural rigidity Eili is set equal to that of the flexible
beam element under consideration.

The force-displacement characteristics of the individual elements of
the beam-actuator system, as given for element i by equation (9), are
combined to determine the overall stiffness K of the beam system as shown
in References [18-19] for example.

The 1inertial properties of the composite actuator-beam system are
determined using the lumped mass method where the mass and rotational
inertial of each element is distributed among the nodes bounding the
element [20].

Therefore, the diagonal mass matrix M (2n%*2n) for the actuator-beam

system, shown in Figure(1), can be written as :
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where m, = [(wgt Mwp+TqW,) 004172

Jq = [(ua+‘71wf+'11wb)'l.13]/2

Ry = DOy qMpe Yy qWp) Ly (W YyMee W) 0Ly 1/2

Jy = [('3*13-1“t*71-1'b).L1-13*('b*1i"f*1&'b).Lisll12

BNy = [(wgemywpemywp )Py 1/2

Iney = [GipsmympsTyw,)oLy31/12

Vb,f,s = bond, film and beam mass per unit length respectively,
kg/m.

% = 1 if ap actuator is bonded to beam element {.

0 if not.

The stiffness and mass matrices K and M are used to define the
dynamic equations of motion of the actuator-beam system.
The equations of motion of the actuator-beam system can be written

as follows :

M§ + K§ = F (12)



modes.
¢1(13) is the modal shape at mode i and location 13.

The above equation can be rewritten as :

-

b T
f Brc Bpr LFp | (17)
If only C modes are controlled with equal number of control forces Fg,

then Fp=0 and equation (6) reduces to :

fc = BecFe (18)
and

fr

BpcFe (19)

In the IMSC method, it is assumed that the control forces Fo will
not ocontribute to the excitation of the residual higher order modes.
Accordingly, it was assumed that there is no control spillover from the
controlled modes into the uncontrolled modes. Mathematically, this means
that the IMSC method assumes that fR=0. This of course can only be true
if the number of controlled modes is very large compared to the number of
residual modes or when the residual modes are at much higher frequency
band than the controlled modes. If these two conditions are not
satisfied, then there will be considerable interaction between the
controlled and residual modes.

The MIMSC method considers such interaction by calculating the
optimal modal control forces [fc] using the IMSC close form solution of
the Riccati Equation such that the control force fi of the ith mode, as

given by [7], is :



where R is a factor that weighs the importance of minimizing the
vibration with respect to the control forces.
wy is the resonant frequency at the 1tb =..'mal mode.
uy, ﬁi are the modal displacement and velocity respectively.

g¢» 8, are the modal position and velocity feedback gains given by

[13]) as :
gy = R +((u&R)2 0-03?3)1/2 (21)
8> = (2R (~aR + ((wR)? +42R)V/2) 4 ,2R)1/2 (22)

Accordingly, the displacement u; and velocity ﬁi at the 1th mode can
be feedback and used along with equations (20), (21) and (22) to
determine the modal control force f,.

Once these forces are calculated, equation (7) is solved to give the.

physically applied control forces Fc as follows :

Then equation (8) 1is used to calculate the modal forces fp that
would excite the residual modes which are generated by the spillover from
the controlled modes. Definitely these f‘R are not equal to zero as
originally assumed in the IMSC method.

Equations (14) can then be integrated with respect to the time to
determine the modal displacements (u;) and velocities (i) which can, in
turn, be used again to compute the modal forces f and so on.

From the modal displacements and velocities, the physical state (§)
of the flexible system can be determined from equation (13). A
relationship can therefore be established between the physical state of

the system and the physical control forces Fo applied to it.



The MIMSC method incorporates also an extremely important feature
which is based on a "TIME SHARING"™ strategy of a asmall number of
actuators in the modal space to control large number of modes.

In this strategy, the modes of vibrations of the flexible ;§stem are
ranked according to their modal energy level. If C actuators are to be
used, then these actuators will be dedicated, at any instant of time, to
control the C modes that have the highest modal energy. In this way, the
actuators will first attenuate the modal energy of the controlled modes.
During that time the control spillover will excite the uncontrolled
modes. When the modal energy of the uncontrolled modes starts exceeding
that of the controlled modes, the actuators are switched to control these
high energy modes in order to damp out their vibrations. Such time
sharing of the actuators between the modes will eventually bring all
these modes under control. .

Figure (3) outlines a flowchart of the MIMSC method indicating the
main steps of optimal placement and time sharing of the actuators as
well as the consideration of the spillover between the controlled and

residual modes.
NUMERICAL EXAMPLES

The application of the MIMSC method is illustrated by considering a
three-element straight steel cantilever beam, shown in Figure (4), which
is 0.0125m wide, 0.0021m thick and 0.15m long. A transverse impulsive
loading of magnitude of 0.1N is applied at the free end of the beam for
1.0ms.

The effects of varying the thickness and material of the bonding
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layer as well as the location of the piezo-actuator are considered.

The physical properties of the considered bonding layers and a
typical piezo-actuator are given in Tables (1) and (2) respectively.

Figure (5-a) shows the time history of the amplitudes of transverse
vibrations of the steel cantilever beam when controlled by the MIMSC
method using one PZT piezo-electric actuator, bonded to the element near
the fixed end of the beam. In this figure the effect of bonding layer on
the physical properties of the system is neglected. The performance of
the system under such conditions will serve as a datum for measuring the
actual effect of the bonding layer when it is accounted for in the
system's model.

With the time sharing concept, the MIMSC utilizes ergectively the
installed actuator such that it provides the necessary action to control
the dominant modes and then shares the controller among tﬁe other modes
until the vibrations of the syster is completely damped out based on the
maximum modal energy ranking. This time sharing concept can best be
understood by considering Figures (5-b) and (5-c).

Figure (5-b) shows the control mode that has the highest modal
energy at any instant of time. It can be seen that the actuator is used
first to attenuate the amplitude of vibration of the first mode, which
currently has the highest modal energy. After a small time interval the
control action is switched to control the second mode since its modal
energy becomes higher than the energy of the other five modes. This
action of time sharing the single actuator between the modes continues
until all modes are brought under control. This is demonstrated clearly
in Figure (5-c) by the continuously decaying vibration energy of the

system.



Table (1) - Properties of bonding layers [10]

Bonding Layer | Density (Xg/m3) | Young's Modulus (MN/m2)
-sotac! | 890 ] 1.1
Eastman 9102 ! 1050 | 1780.0

1 Rubber adhesive tape made by Minnesota Mining and
Manufacturing. St. Paul, Minn.

2 Cyanoacrylate adhesive made by eastman Kodak Co., Rochester,
N.!l



Table (2) - Properties of a typical piezo-electric actuator [8]

Material | PZT
L%-.ge coefficient d | 123
107'¢ (m/v) !
Young's modulus ] 139
(G N/m<) |
Max. voltage v } 1
(Mv/m) |
Max. tgnsile strength o' | 45
(M N/m°) |
Densigy | 7500
(kg/m3) |
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(A) EFFECT OF BONDING LAYER THICKNESS

Figures (6-a), (6-b) and (6-¢c) display the time histories of the
amplitudes of transverse vibrations of the cantilever beam when one PZIT
piezo-electric actuator is bonded to element 3 using an Isotac bonding
layer of thickness of 0.42mm, 0.84mm and 2.1mm respectively. In
dimeﬁsionless form, the selected bonding layers have thickness equal to
0.2, 0.4 and 1.0 that of the actuator thickness respectively.

A comparison between Figures (5-a) and (6-a) indicates that the
maximum amplitude of vibration has decreased from 1.43E-5m to 1.39E-5m
vhen the elastic and inertial properties of the bonding layer, that has a
thickness of 0.00042m, are accounted for. Further decrease in the maximum
amplitude of vibration is observed as the thickness of the bonding layer
is increased as displayed in Figures (6-b) and (6-c).

Detailed analysis of the figures is summarized in Table (3) based on
the displacement and control force indices U4 and U, which are defined by

the following expressions:

t=t N

Ug= T I 5%t (16)
t=0 i=1
t=t* x

U, = T Fy%sat (17)
t=0 i=1

where N is the number of d.o.f. of system
at 1is the integration time increment

t is the maximum time limit of integration

Table (3) indicates clearly that including the effect of bonding

layer results in decreasing the displacement index Uy monotonely but on
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Table (3) - Effect of bonding layer thickness on the displacement
and control force indices for a steel cantilever beanm
controlled by one PZT actuator at element 3

Thickness | Displacex~-* index | Control force index
(m) ! (x107Y) | (x107)
0 2.824}4 1.8128
0.00042 2.6505 3.0164

: :
0.00084 | 2.5531 ! 3.4443
0.00210 | 2,3787 |




the expense of a significant increase in the required control voltages.
For example, using bonding layer thickness of 0.00042m reduces the
displacement index from 2.8244E-10 to 2.6505E-10 whereas it increases the
control force index from 1.8128E-T7 to 3.0164E-T, which amount to an
increase of 66%.

The reduction in the amplitudes of vibration of the beam resulting
from using thicker bonding layers is attributed primarily to the
stiffening effect produced by the bonding layers to the original
actuator-beam system. However, using such thicker bonding layers would
require large control forces to damp out the vibrations of the flexible
beam. This is reflected directly into high control voltages as can be
seen clearly from Figures (7-a), (7-b) and (7-c) for Isotac bonding layer
thickness of 0.%2mm, 0.84%mm and 2.1mm respectively.

Therefore, we have a push and a pull aitﬁation where thicker bonding
layer are preferred to minimize the amplitudes of oscillation and thinner
bonding layers are desirable if one is to limit the magnitude of the

control voltages.

(B) EFFECT OF BONDING LAYER MATERIAL

The effect of changing the material of the bonding layer from Isotac
to Eastman 910 on the displacement and control force indices 1is
summarized in Table (4). The results listed in the table are obtained
when one PZT actuator is bonded to element 3 and a 0.42mm thick bonding
layer is used.

Table (4) indicates that changing the bonding layer material from
the soft Isotac to the more stiff and dense layer of Eastman 910 results

in insignificant reduction in the displacement index but in a
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Table (4) - Effect of bonding layer material on the displacement
and control force indices for a steel cantilever beanm
controlled by one PZIT actuator at element 3

Material } Displacemsnt index - ' Control force index
| (x1019) | (x107)
Isotac | 2.6505 | 3.0164

Eastman 910 ! 2.6499 | 3.6320




considerable increase , of about 20.8%, in the forces necessary

control the vibration of the beam.,

(C) EFFECT OF ACTUATOR LOCATION

Figures (8-a) and (8-b) show the time historIES of the amplitudes
transverse vibrations of the steel cantilever beam when a PZT actuator
bonded to element 2 and 3 respectively. The bonding layer considered,
this case, is Isotac which has a thickness of 0.00042m.

The associated displacement and control force indices are listed
Table (5).

Table (5) as well as Figures (5-a), (8-a) and (8-b) indicate that

is preferable to place the actuator at element 3 near the fixed end

of

is

it

of

the beam in order to obtain the minimum displacement index. On the other

head, if the minimum control forces are concerned, then this actuator

should bonded to element 1.

CORCLUSIONS

This paper has presented a comprehensive analysis of the control

of

vibration of simple structural elements using piezo-electric actuators. A

Modified Independent Modal Space Control (MIMSC) method 1s utilized

actively control the vibration of the flexible system.

to

The effect of the physical parameters of the actuator and its

bonding layer on the elastic and inertial characteristics of the flexible

beam are included in the analysis. It is observed that accounting for the

elastic and inertial properties of the bonding layer results in reducing
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Figure (8) - Time response of steel cantilever beam controlled by one

PZT actuator placed at different location



Table (5) - Effeoct of actuator location on the displacement and
control force indices for a steel cantilever beam
controlled with one PZT actuator

Actuator ] Displace?gnt index | Control tor%e ind-~g
location | (x10'Y) l (xto0!)
Element 1 | 5.2855 ! 0.1021
Element 2 | 3.3681 | 2.5494

Element 3 | 2.6505 | 3.0164




the amplitudes of vibrations of the structural element but on the expense
of higher control forces.

The study has demonstrated also the effectiveness of the MIMSC
method in cgntrolling the vibration of flexible beams that have large
number of degrees of freedom with very small number pf actuators.
Furthermore, the presented method can be readily extended to large

structures without any modifications.
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