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Abstract— The growing number and size of clinical medical
records (CMRs) represents new opportunities for finding mean-
ingful patterns and patient treatment pathways while at the same
time presenting a huge challenge for clinicians. Indeed, CMR
repositories share many characteristics of the classical ’big data’
problem, requiring specialised expertise for data management,
extraction, and modelling. In order to help clinicians make better
use of their time to process data, they will need more adequate
data processing and analytical tools, beyond the capabilities of-
fered by existing general purpose database management systems
or database servers.

One modelling technique that can readily benefit from the
availability of big data, yet which remains relatively unexplored
is personalised analytics where a model is built for each patient. In
this paper, we present a strategy for designing a secure healthcare
platform for personalised analytics by focusing on three aspects:
(1) data representation, (2) data privacy and security, and (3)
personalised analytics enabled by machine learning algorithms.

I. INTRODUCTION

The rapid increase in the volume of data stored in com-
puterised medical records (CMRs) makes it complicated to
retrieve, manage, and analyse data [25]. This complexity
increases when data comes from several sources such as
hospitals (secondary care), patient registries or clinics (primary
care), thus requiring individual patient records to be linked
across diverse sources [6]. These sources of information,
collected over time, and across clinics (general practices),
and often across a multi-vendor setting can be daunting in
terms of size. In this paper, we address three issues: (1) data
representation, (2) data storage requirements in potentially
untrusted environments, and (3) data modelling in order to
support personalized decision support.

We use the term “computerised medical records” or CMRs
to encompass electronic patient records (EPRs) as well as
electronic medical records (EMRs) that capture domain-,
vendor- or institute-specific data of an individual patient. When
aggregating data from different care institutions, a repository
of CMRs may contain both the longitudinal and multi-vendor
aspects of patient records. We have avoided the term electronic
health record (EHR) which is generally used for comprehen-
sive cradle-to-grave records. However, in the UK, as primary
care (clinical) EPRs become more comprehensive they display
more and more of the features of CMRs.

According to specialists in oncology, neurology, endocrinol-
ogy and mobile health technology [9], three important trends
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are becoming apparent. First, the ubiquity of smartphones will
likely to change health and care delivery. Smartphones can
be used in three ways: (1) as biosensors to measure blood
pressure, glucose, heart rhythm and brain waves; (2) as a
laboratory on a chip to test for kidney function, liver function,
thyroid function, blood thinning international normalized ratio
and potassium; and (3) as a scanner, such as an otoscope,
ophthalmoscope, microscope or ultrasound devices. Second,
evidence-based medicine is expected to enable patient-tailored
(rather than guideline-led) treatment. A guideline approach
offers convenience for generalist care-providers because it
prescribes directions for diagnosis and appropriate drugs to
use. However, a one-size-fits-all approach is not necessarily
desirable because not all patients respond to drugs in the same
way. In addition, their required dosage may also be different.
Decision support at the point of care can potentially automate
this process, not by emulating expert’s opinion, but based
on evidence and past history. Third, genome-wide association
studies (GWAS) are increasing the medical understanding of
the pathophysiology of diseases; and not just for oncology. For
example, GWAS in relation to stroke analysis [15] indicates
that there are different types of stroke, or different stroke
mechanisms, and that strokes have quite different genetic
backgrounds or pathways. Therefore, the combined use of
smartphones, evidence-based treatment, and increasing adop-
tion of CMRs in electronic form and use of GWAS will
demand more efficient ways of storing, managing, analysing
and exploiting healthcare data.

In order to deliver the vision of a personalized, evidence-
based clinical decision support system (CDSS), a healthcare
analytic platform must be capable of processing big data and
will require not only faster computers and scalable comput-
ing resources, but also more powerful algorithms. Indeed, a
system-level solution is required. We have found little work in
the literature that addresses the requirements for such a health-
care analytic platform, in terms of security, data representation,
and analytic capabilities. Therefore, we aim to fill this gap in
this study.

According to Mc Kinsey & Company [11], the benefits of
a healthcare analytic platform include helping to cut costs by
improving efficiency in management, and improving care by
better prognosis. Wu et al [29] demonstrated the feasibility
of predicting heart failure cases more than six months before
their clinical diagnosis using machine-learning algorithms such
as logistic regression and Support Vector Machines (SVM).
Wang et al [27] presented prognosis based on patient similarity
metrics (SimProX); similar patients were clustered with an
accuracy of 91% and F-measure of 54%. A study on healthcare
in developed countries showed that they often fall short of



proper evidence based care [10]. A retrospective analysis at
two London hospitals found that 11% of admitted patients
experienced adverse events, of which 48% were judged to be
preventable and of which 8% led to death [26]. These studies
highlight the need, importance, and benefits of a healthcare
analytic platform.

A healthcare analytic platform should have at least the
following minimum functionalities: (1) data aggregation and
linkage; (2) secure data management; (3) versatile data rep-
resentation; and (4) personalized data modelling. Due to the
myriad data sources within the health and care settings, includ-
ing the patient’s smartphones, a healthcare analytic platform
must first be able to import the data onto its native platform.
In order to create a holistic view of the CMR of a single
patient, CMRs of different sources are linked together; and
this process is called data linkage. Because the data belong
to the patients, the platform also has to address privacy and
security issues. One has to specify who has access to what
level of information. It may, for instance, be undesirable to
allow an insurance company to access the details of individual
patient records. Data representation is a pre-processing step
that aims to ensure that data across patients are compatible and
consistent both in terms of ontology, and across various time
periods. As part of the process, data should also be sanitised
in such a way that they conform to relevant standards, i.e., are
of the same units and are within an acceptable range. Finally,
the platform should have an adequate number of choices of
algorithms for carrying out personalized statistical modelling.

We shall address three issues in this study: data secure
requirements, data representation and personalized data mod-
elling. The reader interested in data linkage is referred to [6].

This paper is organised as follow: Section II illustrates the
architecture of the platform. Section III presents the challenges,
strategies and possible solutions. Analytics, conclusions and
discussions are covered in section IV of this paper.

II. ARCHITECTURE

Personalised healthcare platform relies on three components:
• A database management system (database server)
• An analytic engine
• A graphical user interface (GUI) server
The database server stores a copy of pseudonymized patient

data. The data may also be “salted” and/or may be virtual
or synthetic but follow a real distribution. By salting, we
mean that the patient data have been subject to a one-way
(irreversible) transformation after adding a random number
(that is the “salt”). By synthetic, we mean that the data have
been generated by a generative model through Monte-carlo
sampling. The analytic engine processes individual data in
order to produce a statistical model.

The analytic engine and the database server operate inside
a firewall whereas the GUI server may operate outside the
firewall. All the three components communicate between each
other through a point-to-point communication, e.g., via secured
Hypertext Transfer Protocol (HTTP) on special ports. Due to
functional segregation, the GUI server cannot communicate
with the database server.
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Fig. 1. An example architecture of a healthcare analytic platform

Crucially, the interface between the GUI server and the
analytic engine should be designed not to reveal any individual
data points. Through a careful design, the input query and the
output model should not contain any individual data point. An
input query allows the clinician to formulate a hypothesis that
is then submitted to the analytic engine, whereas an output
model is the result of the query in terms of the parameters
of a distribution or a learning algorithm such as a classifier or
decision tree. Finally, the GUI communicates with the “outside
world” through the Internet. Figure 1 shows an example of a
healthcare analytic platform having the above components.

III. DATA STORAGE AND SECURITY REQUIREMENTS

A typical workflow of healthcare data analytics involves
gathering data from difference sources to analyse extracted
information. The process is then repeated in iterations until a
satisfactory result is obtained. Several iterations are needed
as part of data exploration because data may be missing,
of poor quality, and important variables may have not been
identified in the initial data exploration phase. The end-users
can be clinicians, policy-makers, or patients themselves. An
alternative system is a distributed data storage which presents
significant risks in terms of data privacy and security.

A. Data storage

As a CMR repository grows in size, the data will need to
be stored and processed in two different ways: distributed or
centrally processed.

In the first scenario, data may be processed in a distributed
computing environment, where a computer – acting as a client
– may be installed in physical proximity to the data. Several
client computers are coordinated by a server computer whose
role is to aggregate information, typically in the form of model
parameters, in order to produce the final result. For example, a
cluster of primary care clinics may have their own computers
transmiting model parameters to a coordinating server. The
coordinating server then aggregates the model parameters to
form a pooled model.

In a centrally processed computing scenario, all CMRs
reside in a single location. However, the sheer amount of data
means that loading the entire data into the database server
becomes infeasible. In practice, the data may be divided into
chunks, each of which are processed by several computers.
Table I compares the strengths and weaknesses of the two
scenarios.



TABLE I
A COMPARISON BETWEEN DISTRIBUTED AND CENTRALLY PROCESSED

COMPUTING FOR DATA ANALYTICS IN HEALTHCARE

Criteria Distributed Central
Network security Insecure Secure
Client computer trustworthiness Untrusted Trusted
Risk of data breach Low High
Modification to machine learning algo-
rithms to implement

High Low

Computer memory requirement Low High

As can be seen, there are always pros and cons in each
case. For instance, in distributed computing, a client computer
may be a Trojan horse; hence, it cannot always be trusted. On
the other hand, in centralised computing, all client computers
reside in a secure network guarded by a firewall and so data
are generally secured. However, if the network security is
compromised, then, the entire set database may be at risk.

B. Security requirements

A typical healthcare platform should have four principles of
data security, namely,
• Diversity: This means that a dataset is unique for a

single data extraction and modelling task. If the data
of a patient are represented in two data sets, then the
two records should be different, e.g., the pseudonimized
identity reference or the data should be different.

• Revocability: This means that if a data set becomes
compromised (stolen), a new copy of the data set can
be reissued or regenerated.

• Security: This means that if a data set is stolen, it is
computationally difficult to derive the original data set.

• Utility: This means that if patient data are processed or
transformed, they should not reduce their usefulness for
analytics.

Table II shows how an online healthcare analytic platform can
adhere to the four principles.

C. Attack models and countermeasures

The architecture as proposed in Figure 1 could be attacked
in a number of ways. Table III shows a number of potential
attacks and countermeasures to its three components. These
attacks are widely discussed in the literature on network
security, e.g., [3].

IV. DATA REPRESENTATION

A CMR is a collection of patient information that contains
disease diagnoses, patient-doctor correspondences, laboratory
test results, and drug charts. The information can be recorded
as a relational database. The most important table, some-
times called a Journal table, contains the following col-
umn attributes: <patient ID>, <code>, <date>, <value1>,
<value2>, <text>. <patient ID> refers to an internal ref-
erence of a patient ID, that is, a foreign key in database
terminology. A separate Patient table in which <patient
ID> is a primary key contains relevant information about the
patient such as year of birth, gender, economic deprivation
index, etc. <code> refers to a clinical code defined by

TABLE II
FOUR PRIVACY AND SECURITY PRINCIPLES OF A HEALTHCARE PLATFORM

Properties Attributes
Diversity Data such as dates are perturbed with noise

Variable names are transformed
The distribution of variables are transformed
The value of variables are factorized
The pseudonymised ID references are different for
the same patient for different data extractions

Revocability Data are subjected to salting transform
Security Data may be encrypted in certain cases

Data are stored in the database server, which is at
the deepest end of the chain from the GUI
Through a careful design of Query and Model, there
is minimal leakage of individual data points
The communication channels between the GUI and
the analytic engine, and between the analytic engine
and the database server are encrypted from one end
point to another; and through dedicated communi-
cation ports only. Functional segregation: The GUI
server cannot communicate with the database server
directly.

Utility The end-user can still run their Query (analytic task)
despite data seclusion. Models remain useful with
data seclusion

SNOMED-CT or other code [5]. It can represent a diagnosis,
treatment procedure, drugs prescribed, or administrative codes
(discharged note), occupation, life-style (drinking and smoking
habits), family history, and laboratory assay measurements.
<date> refers to the date when the transaction is entered.
<value1> and <value2> are real numbers associated with the
code. For example, blood pressure has both systolic and dias-
tolic blood pressure measurements and they are recorded using
these two value fields.<text> is often used to supplement the
transaction with additional free text not readily specified by
any of the aforementioned data attributes. <text> is often
used in conjunction with drug prescriptions, specifying how
drugs should be taken, for instance, “Take 3 pills a day after
meals”. The combined attribute of <patient ID>, <code>,
and <date> constitutes a unique composite primary key. This
is important in order to eliminate duplicate entries.

From the machine learning perspective, a CMR can be de-
scribed along three dimensions, namely the patient dimension,
the time dimension, and the concept dimension. The 3D data
structure of cells hold the contents of <value1>, <value2>,
<text>). We describe how these three dimensions of data can
be dealt with below.

1) Patient dimension: Machine learning methods that oper-
ate along the patient (or patient record) dimension include but
are not limited to the following: mixture of experts, multi-level
models [22], multi-task learning and domain adaptation [8].
This is further discussed in Section V.

2) clinical code dimension: Machine learning methods op-
erating along the concept dimension are closely related to
ontology. If patient records are documents, clinical codes
are words, then we can use popular text-retrieval models
such as theme-topic models (e.g., Latent Dirichlet Allocation,
probabilistic latent semantic analysis (PLSA)) and vector space
models (e.g., LSA). LSA [13], [7] is a popular information
retrieval technique which can analyze the relationship between
documents (patient records) and the terms (clinical codes) [17].



TABLE III
SEVERAL ATTACK MODELS AND COUNTERMEASURES.

(a) Attacks to the GUI server
Potential attack Countermeasure
Query poisoning
(untrusted client)

Better query design: A query can-
not ask for any individual data
point

DNS cache poisoning
(man-in-the-middle
attack)

Challenge-response solution

Denial-of-service attack System with fail-safe or fail-over
modeDynamic network traffic anal-
ysis

(b) Attacks to the analytic server
Potential attack Countermeasure
Query poisoning Better query design: A query can-

not ask for any individual data
point

DNS cache poisoning Use dedicated ports for communi-
cation

Eavesdropping Use encrypted communication

(c) Attacks to the database server
Attack Countermeasure
Physical threat (flooding;
power surge)

Critical infrastructure protection

Insider attack (collusion;
coercion)

Role segregationBackground
check; verification of ID

Stealing ” Cancellable” database (” salting”)
Encryption

Virus: Trojan Horse Linux OS (preferred); frequent up-
dates

The basic assumption of LSA is that similar CMRs are likely to
share the common clinical codes [18]. LSA here can be used
to (1) compare the patient records in the low dimensional space
for subsequent patient clustering or classification; (2) find
relations between clinical codes; (3) retrieve similar patient
records using the LSA (low dimensional) space, which is an
approach that is commonly used in information retrieval.

3) Temporal dimension: There are a number of algorithms
commonly used for temporal analysis. Examples include auto-
correlation, cross-correlation, transfer entropy, randomization
testing, and phase slope index [16] which are used to solve
regularized time series problems [1]. These methods work well
when the observations are sampled at equal time intervals, such
as speech, music, and EEG signals. However, CMRs are often
not recorded at regular intervals. For example, blood pressure
samples are only collected as a patient visits his/her clinic,
as and when necessary, or else during regular appointments.
Irregularities, gaps or missing samples are inevitable because
a patient can be absent for the appointment or a clinician may
cancel or reschedule the appointment.

From the literature, an irregular time series can be divided
into two types: (1) time series with missing values at random
intervals and (2) time-series sampled at non-uniform time
intervals. The missing value problem can be regularized using
(a) interpolation techniques and (b) regression analysis [12].
This method of filling the missing values in machine learning
is known as imputation. Interpolation can be achieved using
spline methods such as Akima-spline and cubic spline. The
standard techniques in the regression analysis approach include
autoregressive models such as Autoregressive Integrated Mov-

ing Average (ARIMA) and (Autoregressive Moving Average)
ARMA models. The regularization of non uniform time inter-
vals can be addressed using spectral analysis [24]. The idea of
spectral analysis is to regularize the time series by generalizing
it with Fourier transforms or wavelet transforms, e.g., using a
Lomb-Scargle Periodogram (LSP) [23].

4) Challenges of tackling the problem in all three dimen-
sions: Although algorithms that deal specifically with each of
the three dimensions already exist and are even well estab-
lished, there are few algorithms that can operate in all three
dimensions simultaneously. For instance, existing solutions in
information retrieval may scale well with the number of CMRs
and concepts but do not consider the evolution of concepts over
time. Dynamic models such as Hidden Markov Models may
not scale well with a large number of concepts or many CMRs.
Other popular machine learning methods, such as those based
on tensors, are not suitable for modelling CMRs because they
cannot process irregular samples without discretizing the time
dimension. Therefore, data modelling in CMRs represents a
significant challenge; and this is where significant progress
should be made in the near future.

Another challenge in modelling CMRs is that the between-
subject variation of clinical laboratory data is much more
larger than the within-subject variation [19]. This concept is
illustrated in Figure 2(a).

V. ANALYTICS

In this section, we will discuss several analytic methods
more formally, beginning with the most common tasks in
Section V-A, followed by personalized modelling techniques
in Section V-B.

A. Common analysis tasks in healthcare informatics

1) Data cleaning and calibration: Two tasks that can
be semi-automated are data cleaning and calibration. Data
cleaning aims to cleanse data by removing obvious data that
are out of range, the problem of which is commonly caused
by errors introduced during data entry.

Data calibration is needed in order to handle a change
in units or reporting assay methods. Units of measure may
change over time. For instance, kilograms replace pounds,
and Glycated hemoglobin (HbA1c) has changed from the
DCCT (Diabetes Control and Complications Trial) units to
the new mmols/mol values known as the IFCC (International
Federation of Clinical Chemistry) units. By reporting assay, we
mean that different methods may have been used to calculate
the value of a variable. As a result, structural bias may
exist. An example of this is eGFR reported using different
equations. We have developed an algorithm to blindly group
the measurements according to their assay methods and then
calibrate for their biases [21]. Without calibration, the eGFR
measurements exhibit gender-bias. This application is illus-
trated in Figure 2(b).

2) Joint and conditional probability estimation: Due to its
simplicity, joint and conditional probability estimations are
widely used in healthcare. If A and B are two discrete variables,
joint probability refers to the probability table P(A,B) whereas
conditional probability refers to P(A|B).
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Fig. 2. (a) The trajectories of individual CKD patients [20]. Each curve represents the eGFR trend of an individual patient. Red curves are raw data obtained
from the patients health records whereas blue curves represent a fitted model. While there is a tendency of decreasing eGFR over time in the population,
as indicated by the thick black arrow, the individual trends are drastically different from one another, as well as from the global trend (as represented by
the black arrow). (b) Calibration of estimated Glomerular Filtration Rate (eGFR) [21]. Without calibration, we observe that the original eGFR series, which
is calculated using the Modification of Diet in Renal Disease (MDRD) formula, is biased. With bias correction, the calibrated eGFR series coincides with
phase 2 (the later series). The phase 1 and phase 2 series are different due to the use of different assay methods. In Phase 0, eGFR was not recorded but we
can still calculcate them based on Serum Creatinine series (not shown here) which was recorded before eGFR was introduced as a standard reporting assay
method. (c) Other demonstration of analytics. Upper-left: age-sex profile (the X-axis is frequency conditioned on the gender and the Y-axis are the five-year
age bin). The blue bars correspond to female patients and the red bars correspond to male patients. Upper-right: histogram of systolic and diastolic blood
pressure. The “spikes” show the systematic rounding of the end-digit zero. Bottom-left: regularization of logistic regression (X-axis is the λ parameter and
Y-axis is error deviance). Bottom-right: Visualization of patient records projected onto two dimensions. CMRs show a natural grouping among the records.

An example of this is in age-sex profiling where the idea
is check the prevalence of a disease given five-year age bands
and gender, i.e., P(disease|age,sex). For instance, the age-sex
profile of Type 1 diabetes is expected to be from a younger
population than that of the Type 2 diabetes. Furthermore, one
would expect more female patients with Type 2 diabetes than
their male counterparts for a certain age group at a given
location. As a counter example, the conjunction of ’infant’
and ’smoker’ would likely imply that there is a misalignment
error or wrong pairing between the demographic data and the
clinical data. Therefore, by using age-sex profiling, clinicians
can gauge the validity of their data as the first line of defence
against data linkage error.

3) Classical analysis: regression, classification, and cluster-
ing: Other commonly used analyses include: (i) trend analysis
– this allows one to visualize the trajectory of biomedical
measurements which is useful for characterizing the inter-
versus-intra patient variability; (ii) risk modelling, such as
predicting the onset of disease in five years; (iii) clustering
patient records; (iv) diagnosis and prognosis; (v) survival
analysis; and (vi) pathway analysis. Some of these examples
are shown in Figure 2(c).

B. Patient-specific methodologies

One of the challenges in healthcare modelling is to render
the model patient-specific. The reason for this is that the
between-subject variation of clinical laboratory data is much
larger than the within-subject variation [19]. Fortunately, there
are a number of disparate machine learning techniques that
have been developed for the small sample-size learning prob-
lem. These techniques are applicable here because even though
there are plenty of training samples – hence, big data – for each

patient, the number of samples are essentially very limited. We
describe four strategies here.

The most classical approach to this problem is variable
adjustment, wherein one single model is fitted on the entire
database of CMRs. However, the model is adjusted for person-
specific variations such as age, gender, therapies, and other
conditions. This is the de facto method used in the risk
modelling literature, e.g., [4].

The second strategy is called model adaptation. A back-
ground model is first trained on data samples aggregated from
all patients. This model is also called a Universal background
model or a world model. This model is then adapted with
the training data of a particular patient in order to obtain a
patient-specific model. There are several ways to realize the
adaptation, namely, maximum a posteriori adaptation, max-
imum likelihood linear regression, and adaptation via eigen
vectors [14]. These methods differ slightly in their ways of
adapting the parameters from the universal background model
in order to obtain patient-specific model parameters.

The third strategy is to divide the patients into homogeneous
groups so that one patient record is assigned to one group of
patients. Therefore, rather than designing one risk model, one
would design a group-specific risk model. This is a divide-
and-conquer strategy because effectively the patient dimension
is divided into a number of partitions. If there are N patient
groups, then one effectively designs N risk models. This is
opposed to the one-size-fits-all strategy wherein only one
risk model is designed. This approach is called mixture of
experts [2].

The final strategy, called patient similarity, is based on
information retrieval [28]. The idea is to build a patient-specific
model in terms of the retrieval patients that are similar to a



target patient. The retrieved cohorts are then shown to the
clinician in order to provide feedback to the system such that
the next retrieved cohort of patients will predict the target
patient’s outcome with high probability

VI. CONCLUSIONS

We have, in this study, set out to explore strategies for
addressing the challenge presented by online healthcare plat-
forms, in particular the data processing requirements presented
by the associated clinical medical records (CMR) repositories.
We have argued that one strategy in particular, namely person-
alised patient analytics, has the capacity to address this clinical
big-data challenge by presenting and utilising data in a patient-
specific manner such as would be required in actual clinical
practice. By adopting personalised patient analytics the data
management platform would implicitly provide personalised
decision support when used in conjunction with appropriate
machine learning algorithms. We have therefore analysed the
requirements for data representation, data privacy and per-
sonalisation of online healthcare platforms when built around
personalised patient analytics.

Addressing data privacy requires examination of the compar-
ative merits of distributed and centralised systems; with respect
to these two alternatives we have identified four common as-
pects required for effective utilisation in an online context, and
have proposed effective strategies for addressing each of these.
As regards data representation, we have identified the key re-
quirements for analytic treatment in terms of machine learning
algorithms, and indicated the associated issues of grouping,
temporality and data-absence when designing systems. Various
strategies of personalisation were evaluated; variable adjust-
ment, model adaptation, grouping, patient similarity - each
would have the merit of leveraging global population trends
to best model an individual patient, irrespective of the limited
sampling implied by personalisation. We thus conclude that
personalised patient analytics is an appropriate strategy for
effectively leveraging clinical medical record databases for
decision support.
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