



#### Windowed DMD as a Microtexture Descriptor for Finger Vein Counter-spoofing in Biometrics

Santosh Tirunagari, Norman Poh, Miroslaw Bober & David Windridge University of Surrey, Guildford, Surrey, United Kingdom GU2 7XH







#### Finger Vein Biometrics

• Authentication system that matches the vascular patterns in an individual's finger.



 Blood vessel patterns are unique to each individual, as are other biometric data such as fingerprints or the patterns of the iris.





#### How it works







#### Importance



Source: http://slate.me/1Bmmay5





## Finger vein Spoofing - Background



#### Source: http://bit.ly/1QKJT4c





## How to counter spoof?

- Look for the *cues and artefacts* that differentiate valid from the spoof.
- Our Hypothesis:
  - Cues that differ *light reflection* properties.
  - micro-level artefacts that differ in *quality*.
- How to identify these cues and artefacts?
  Thanks to *texture based methods*.





#### **Texture methods**





VS

VS



Band pass filtering



Local



Robust to misalignment Micro texture





#### Texture methods

#### Our proposal

| Texture methods                        | Spatial / Frequency | Local / Global |
|----------------------------------------|---------------------|----------------|
| Windowed-Dynamic<br>Mode Decomposition | Spatial             | local          |
| Discrete Wavelet<br>Transform          | Frequency           | Global         |
| Discrete Cosine<br>Transform           | Frequency           | Global         |
| Histogram of Gradients                 | Spatial             | Global         |
| Filters                                | Spatial             | Local          |
| Local Binary Patterns                  | Spatial             | Local          |

# DMD – Facial counterSpoofing



Santosh Tirunagari, Norman Poh, David Windridge, Aamo Iorliam, Nik Suki, and Anthony TS Ho. Detection of face spoofing using visual dynamics. Information Forensics and Security, IEEE Transaction on, 10(4):762–777, 2015.

9





#### How DMD works?



Find the unknown matrix A Solve for eigenvalues and vectors of A Generally using Arnoldi approximations.





## How about images ?

- Our Proposal Windowed DMD
- Research questions:
  - If DMD can capture principle movements videos then would W-DMD capture texture gradients from images?
  - What would be the effect of texture gradients on classification performance ?
  - How effective is the W-DMD compared to plethora of existing descriptors ?









#### W-DMD on full finger vein images

W-DMD (C1)

W-DMD (C2)





Spoof











#### W-DMD on cropped finger vein images

W-DMD (C1)

W-DMD (C2)





Spoof







#### **Classification framework**



**SVM - Classifier** 

#### Texture feature dimensions

| Texture Methods | Cropped | Full   |
|-----------------|---------|--------|
| LBP             | 1x531   | 1x531  |
| DWT             | 1x36    | 1x70   |
| DCT             | 1x400   | 1x400  |
| HoG             | 1x81    | 1x81   |
| Entropy         | 1x138   | 1x270  |
| STD             | 1x138   | 1x270  |
| Range           | 1x138   | 1x270  |
| W-DMD           | 1x3330  | 1x6550 |
| W-DMD+LBP       | 1x531   | 1x531  |

Minimum Intersection Kernel

$$k(x,y) = \sum_{i=1}^{n} \min(x_i, y_i)$$





#### Dataset

#### • IDIAP's Fingervein Spoofing Dataset



| Protocol | Training set | Development<br>set | Test set |
|----------|--------------|--------------------|----------|
| full     | 120          | 120                | 200      |
| cropped  | 120          | 120                | 200      |





#### Evaluation

- Equal Error rate based on F-ratio
- Larger F-ratio => higher separability.
- Measured even when no error is observed.
- F-ratio = [ $\mu C \mu I / \sigma C + \sigma I$ ]
  - Where C is real and I is spoof and  $\mu$  is mean and  $\sigma$  is standard deviation.

Norman Poh and Samy Bengio. How do correlation and variance of base-experts affect fusion in biometric authentication tasks? *Signal Processing, IEEE Transactions on*, 53(11):4384–4396, 2005.





#### Experimental Hypotheses

- Which DMD components?
- Comparisons with other methods?





#### Exp 2. Results - EER(F)(%)









#### **F-ratio**







#### Conclusions

- Limitations Size of the feature vector.
- Applied W-DMD on finger vein images for valid and print attacks from 110 clients (240 (training) + 240 (development) + 400(testing)).
- Significance of the W-DMD + SVM pipleline effectively detect the spoof samples.
- The results were promising in tackling the print attack challenge.





# Thank you

# Any Questions ?

#### Paper ID: 63 {s.tirunagari, n.poh}@surrey.ac.uk

Acknowledgements: Department of Computer Science & Centre for Vision Speech and Signal Processing. University of Surrey, Guildford, UK.