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e 

e This paper p re sen t s  a comparative study between three a c t i v e  cont ro l  

a lgor i thms which have proven t o  be s u c c e s s f u l  i n  c o n t r o l l i n g  t h e  

v ib ra t ions  of large f l e x i b l e  systems. These algorithms are namely: t he  

Independent Modal Space Control ( I M S C ) ,  the Pseudo-inverse ( P I )  and t h e  

Modified Independent Modal Space Control (MIMSC) . 
e 

e E m p h a s i s  is p l a c e d ,  i n  t h i s  s t u d y ,  on d e m o n s t r a t i n g  t h e  

e f f ec t iveness  of the  MIMSC method in cont ro l l ing  t h e  v ib ra t ion  of large 

Systems w i t h  miall number of ac tua tors  by using an  e f f i c i e n t  time sharing 

s t ra tegy .  Such a s t r a t egy  favors  the MIMSC over the  IMSC method, which 

r equ i r e s  a large number of ac tua tors  t o  cont ro l  equal number of modes, 

and also over the P I  method which attempts t o  con t ro l  large number of 

modes wi th  smaller number of ac tua tors  through the use of an i n e x a c t  

statistical r e a l i z a t i o n  of a modal cont ro l le r .  

a 

e 

e Numerical examples are presented to  i l l u s t r a t e  t h e  mains f e a t u r e s  of 

t h e  three algori thms and t h e  merits of t h e  MIMSC method. 

e 

e 

e 



a 

Active c o n t r o l  of t h e  v i b r a t i o n  of f l e x i b l e  systems has been 

r e c o g n i z e d  as e s s e n t i a l  t o  enhancing the  stable operat ion of these  

systems when subjected t o  ex terna l  disturbance. Strategies employed in 

the design of such con t ro l  systems a r e  based pr imari ly  on modal cont ro l  

methods whereby t h e  f l e x i b l e  s t ruc tu res  are cont ro l led  by con t ro l l i ng  

t h e i r  dominant modes of v i b r a t i o n s .  Generally, these modal cont ro l  

strategies belong t o  e i ther  the  class of the  coupled methods 11-63 or  t o  

the  class of the  independent modal space con t ro l  ( I M S C )  method developed 

by Meirovitch and co-workers 17-12]. In t h e  first c lass ,  al though the  

open-loop equat ions of the system are uncoupled, t h e  close-loop equations 

become coupled through the feedback cont ro l le r .  This  makes t h e  optimal 

computation of the  feedback require  the so lu t ion  of a coupled matrix 

Riccati equat ion  13-63. For large f l e x i b l e  s t r u c t u r e  t h e  so lu t ion  of the  

r e s u l t i n g  Riccati equation can pose se r ious  d i f f i c u l t i e s  which l i m i t  

s i g n i f i c a n t l y  t he  a p p l i o a b i l i t y  of the  coupled modal control  methods. The 

IMSC method avoids,  however, such l imi ta t ions  as the cont ro l  laws are 

d e s i g n e d  comple t e ly ,  in t h e  modal space maintaining the  o r i g i n a l l y  

uncoupled  open-loop equations of the system as a s e t  of independent 

s e c o n d - o r d e r  e q u a t i o n s  even a f t e r  i n c l u d i n g  t h e  modal feedback 

c o n t r o l l e r s .  Meirovitch e t  a1 17-12] showid, under such condi t ions,  that 

it is possible  t o  compute, in a close form, the  opt imal  modal feedback 

gains .  T h i s  feature makes the  IMSC method computationally a t t r a c t i v e  and 

lends  it s u i t a b l e  for  cont ro l l ing  large s t ruc tu res .  
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e 
The IMSC method requi res ,  however, t h e  use of as many ac tua to r s  as 

a 



t h e  number of modes t o  be cont ro l led .  Such a requirement r e s u l t s  in 

practical l i m i t a t i o n  of t h e  method when applied t o  large s t r u c t u r e s  where 

t h e  number of modeled modes can be very large. e 

Lindberg and Longman 1133 proposed t o  modify t h e  IMSC by using a 

small number of ac tua to r s  t o  con t ro l  a l l  the  modeled modes through t h e  e 
cons idera t ion  of an approximate pseudo-inverse (PI) r e a l i z a t i o n  of t h e  

modal c o n t r o l l e r .  This  modification can r e s u l t  in physical con t ro l  forces 

which can be fa r  from desired because the P I  is i n  effect a least square 

f i t  of N modal forces t o  obta in  M phys ica l  forces. When N=M then t h e  

0 

r e a l i z a t i o n  is exact  and is also the same as the  IMSC. But as M becomes 

much smaller than N, 1.e. when the number of ac tua to r s  << number of a 

modes, t hen  the  accuracy of the  least square f i t  becomes increas ingly  

poor. Accordingly, when the r ea l i zed  fo rces  are transformed back t o  the  

modal space t h e  r e s u l t i n g  modal forces  w i l l  be very far from the  optimal 

forces and this will result in de te r io ra t ion  in the  performance of t h e  

a 

c o n t r o l l e r .  
e 

F o r  these reasons,  t he  Modified Independent Modal Space Control 

(MIMSC) method is i n i t i a l e d  C141. 

e 

The MIMSC modifies the  IMSC algorithm t o  account f o r  the cont ro l  

s p i l l o v e r  from the control led modes i n t o  the uncontrolled modes when a 

small number of ac tua to r s  is used t o  control  a large number of modes. The 

method incorpora tes  a l s o  an  optimal placement procedure for  determining 

the optimal loca t ion  of the ac tua tors  i n  the  s t ruc ture .  Moreover, t h e  

MIMSC method relies on an e f f i c i e n t  algorithm fo r  "Time Sharing" a small 



a 

number of ac tua to r s  i n  the modal space t o  cont ro l  a large number of 

modes. In effect the  MIMSC uses M optimally placed ac tua tors  t o  cont ro l  

the  M modes that have t h e  highest modal energy a t  any instant of time and 

time share these  a c t u a t o r s  among the other  res idua l  modes when t h e  
a 

con t ro l  s p i l l o v e r  makes t h e i r  modal energy higher than the  control led 

modes . 
e 

Comparisons between the  IMSC, PI and MIMSC algorithms are presented 

here t o  i l l u s t r a t e  the  main f ea tu res  and merits of these methods as 

appl ied t o  the cont ro l  of v ib ra t ions  of spring-mass systems and simple 

c a n t i l e v e r  beams. 
0 

e 

a 

a 

Complex f l e x i b l e  systems oan be modeled dynamically by a discrete 

f inite element model as follows : 

M S +  K6 = F 
a 

where M is the  overa l l  mass matrix of the s t ruc tu re  

K is the  overa l l  s t i f f n e s s  matrix of the  s t ruc tu re  

6 and 'a' are t h e  displacement and accelerat ion of the nodal po in t s  

of the s t ruc tu re  

is the  vector of the external  and control  forces  acting on 

the s t ruc ture  

F 



Equat ion  ( 1 )  is p u t  in the modal space by using the  following 
e 

weighted modal transformation : 

a 

6 = @U 

0 
where U is the  modal coordinates  of the system 

@ is the weighted modal shape matrix of the eigenvectors of the 

f l e x i b l e  system 

Using such transformation, reduces t h e  coupled equation of motion 

(1) t o  the  following uncoupled form : 
0 

where is a diagonal matrix of the  eigenvalues of the system 
0 

I f is the modal force vector  given by 

'0  

a 
I where @i(lj) is t he  modal shape a t  mode i and loca t ion  lj .  

0 

(4) 

The modal cont ro l  fo rces  f ,  in equation (41, are determined in a l l  

t h e  three a l g o r i t h m s  from t h e  close form so lu t ion  of t he  Riccati 

Equation such that the  cont ro l  force fi of the ith mode i s  : 

( 5 )  

where R is a f a c t o r  t h a t  weighs the importance of minimizing t h e  

0 



0 

0 

0 

e 

vibrat ion with respeot t o  the cont ro l  forces. 

m i  is the resonant frequency a t  the  ith normal mode- 

U i ,  h i  are t h e  modal displaoement and ve loc i ty  respectively.  

g l ,  g2 are t h e  modal posi t ion and ve loc i ty  feedback ga ins  given 

by 171 as : 

Accordingly, t h e  displacement ui and ve loc i ty  fii a t  the ith mode can 

be fedback and used along with equations (51, ( 6 )  and (7) t o  determine 

the modal cont ro l  force fie 

0 

0 

e 

The IMSC is based p r imar i ly  on the  premise that t h e  number of 

ac tua to r s  is equal t o  the  number of oontrolled modes. Such a premise is 

a t t r i b u t e d  t o  the f a c t s  that the physical  control  forces  F, in equation 

(4) can be determined exactly from the modal forces  f by wri t ing : 

and that the  necessary condition f o r  the existence of (#T)ol is t h e  order  

of  a c t u a l  p h y s i c a l  f o r c e 8  F be equal  t o  order of modal foroes  f .  

Accordingly,  t h i s  premise poses serious practiaal l imi t a t ions  t o  the 
.. * 

appl ica t ion  of the IMSC t o  oontrol large s t ruc tu res  s ince the number of 

modes re ta ined  in the mathematioal models may be very large and it is 

impossible t o  use an equally large number of aotuators  t o  cont ro l  a l l  
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a 

these modes. Therefore, equation (4) can be rewr i t ten  as : 

o r  

f C  = BCCFC 

f R  = %$C 

( 9 )  

where f C , R  are t h e  modal forces  on the cont ro l led  and r e s idua l  modes 

respect ively.  

are t h e  physical fo rces  on the  control led modes. FC 

Once the  modal con t ro l  forces  f C  are calculated,  

t o  g ive  the physical  appl ied forces  FC a s  : 

FC = BCC-'*fC 

Then equation (11 

equation (10) is solved 

(12) 

I s  used t o  calcula,e t-e modal fo rces  f R  t h a t  

would e x c i t e  the r e s idua l  modes which are generated by the s p i l l o v e r  from 

the  cont ro l led  modes. 

The IMSC method assumes that fR=O and of course t h i s  can only be 

t r u e  if t h e  number of controlled modes is very large compared t o  the  

number of r e s idua l  modes or when the res idua l  modes are a t  much higher 

frequency band than t h e  controlled modes. 

a 

a 

The pr inc ip le  l imi t a t ion  of t he  IMSC method is the  requirement t h a t  

a 



the number of ac tua to r s  be equal t o  t h e  number of control led modes. When 

t h e  number of ac tua to r s  I s  less t h a n  the  number of cont ro l led  modes, 
0 

equation (8) w i l l  no longer be val id .  Consider equation ( 4 )  when t h e  

cont ro l  modes are equal t o  t h e  modelled modes ( N )  but fewer ac tua to r s  (M) 

are t o  be used, thus  it reduces t o  : 
0 

e 

0 or  

f = STF 

e Since (pT is not  a square matrix, F cannot be obtained d i rec t ly  through 

matrix inversion, The so lu t ion  of equation (14) for F in terms of f can 

be obtained using least-square approximation, which is : 

0 
F = B’lf 

where BO1 is t h e  pseudo-inverse of ST given by 

(15) 

Once the  phys ica l  forces  are calculated,  the  actual modal cont ro l  forces  

can be computed using equation (13). As noted before,  these approximately 

computed m o d a l  forces  w i l l  not be equal t o  the optimal modal forces  

determined from the IMSC algorithm. 

e 

0 



e 

e 
The MIMSC method ranks the modes of v ibra t ion  according t o  t h e i r  

modal energy (oiS2+b2) and dedicates t h e  des i red  M ac tua to r s  t o  cont ro l  

t h e  h ighes t  H modes. The modal control  forces  f C  generated t o  cont ro l  

these modes are computed from equations (51, ( 6 )  and (7).  The exact 

r e a l i z a t i o n  FC of these forces  is computed from equation (12) and the 

s p i l l o v e r  i n t o  the  res idua l  modes is calculated from equation (10). 

e 

e 

A flow chart of the MIMSC algorithm is shown in Figure (1). The 

chart  i n d i c a t e s  t h a t  t h e  t ime sharing strategy w i l l  work first t o  

a t t enua te  t he  modal energy of the control led modes. During t h a t  time t h e  

c o n t r o l  s p i l l o v e r  w i l l  e x c i t e  t he  uncontrolled modes. When the modal 

energy of the uncontrolled modes starts exceeding that of the  cont ro l led  

modes, the ac tua tors  are switched t o  control  these high energy modes in 

order t o  damp out  t he i r  v ibra t ions .  Such time sharing of the ac tua to r s  

between the modes w i l l  eventual ly  bring a l l  these modes under cont ro l .  

e 

0 

0 

T h i s  s t ra tegy  along with the  exact r ea l i za t ion  of t he  cont ro l  forces  

favor  the MIYSC method over the I M S C  and PI methods in con t ro l l i ng  t h e  

v ib ra t ion  of large systems with only a few actuators.  
0 

e 

Figure ( 2 )  shows a mul t i  spring-mass system which is considered as a 
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INPUT I Struotural  parameter and loading 

Determine retduoed modal shape matrix 
oorresp. t o  ao tua tors  looation and oontrol led modes 0 

No --- 

I n i t i a l  looation of aotua tors  

Time sharing 
t h e  actuators 
bet, modes with 
h i g h e s t  energy 

t 

Change ac tua tor  I locat ion 

gains  of t h e  control ler  
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Compute time history of a l l  
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diaplaoenent index 

1 
Change ac tua tor  Yes Optimum aotua tor  

locat ion 
Yes Optimum aotua tor  

FisUre (1) - Flow chart of the KIMSC oomputational algorithm 
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simple example of a f l e x i b l e  system t o  I l l u s t r a t e  the c h a r a c t e r i s t i c  of 

t h e  three algorithms. The main dynamic cha rac t e r i s t i c s  of t h i s  system are 
e 

given in Table (1). 

0 
The th ree  masses of the f l e x i b l e  system shown i n  Figure (2) are 

d i s p l a c e d  i n i t i a l l y  1, -1 and 0 respec t ive ly  from t h e i r  equilibrium 

pos i t i ons  and then l e f t  t o  v i b r a t e  under the  ac t ion  of an IMSC oon t ro l l e r  

w i th  a l l  the states are observed. The con t ro l l e r  is designed t o  cont ro l  

the first mode of v ib ra t ion  through the use of one ac tua tor  placed a t  the 

first mass. 

e 

e 
Figure ( 3 4 )  shows t h e  time his tory  of the amplitudes of v ibra t ion  

of the  three masses. The figure indicates  that the IMSC method failed, as 

p r e d i c t e d ,  t o  c o n t r o l  a l l  the 3 modelled modes of v ib ra t ion  of t h e  

sys tem.  Such drawback can be related d i r e c t l y  t o  t h e  fact t h a t  t h e  

a c t u a t o r  has been u t i l i z e d  only t o  e l iminate  the  first mode and no 

con t ro l  ac t ion  is provided t o  the residual  two modes. 

a 

a 

e 
Figure (3-b) shows the time history of the ampli tudes of vibrat ion 

of three masses as obtained by t h e  PI method with one ac tua to r  placed a t  

the  first mass. e 

Although t h e  modal cont ro l  forces are obtained by using a least- 



a 

e Table (1) - Dynamic characteristics of a three spring-mass system. 

0 

e 

e 
0.5000 -0.7071 0.5000 
0.7071 0.0000 -0.7071 
0.5000 0.7071 0.5000 

e 

a 

e 

e 



lnSC method 

Pseudo- Inver se metflod 

b. ! 

nltlSC nethod 

T i m e  h i s tor ie s  of 
system using IMSC, 
(R= 100) 

amplitudes of 
P I  and MIMSC 

vibration of spring-mass 
methods with one actuator 
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lo 
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0 

square approximation, the  f igu re  indicates  t ha t  t h i s  method can result in 

damping out  t he  v ib ra t ions  of the  system. Th i s  is due t o  t he  fact that 

a l l  t he  modes are control led b u t  by vir tue of the in-exact na ture  of the 

feedback cont ro l  law, t h e  process of suppression of the v ib ra t ion  is not 

as dramatic as expected. 

U i t h  t he  time sharing concept, t he  MIMSC u t i l i z e s  e f f ec t ive ly  the  

i n s t a l l e d  ac tua to r s  such t h a t  these actuators w i l l  provided exact  cont ro l  

ac t ion  t o  t he  dominant modes and sequence the  c o n t r o l l e r  among a l l  the 

modes u n t i l  t he  v i b r a t i o n s  of the  system is completely damped out. 

Accord ingly ,  I n  t h e  cons ide red  example, the ac tua to r  is powered by 

s i g n a l s  t o  e l imina te  a l l  the  three modes of the system and not only t h e  

first mode 88 in the Uisc. This is achieved by time sharing the  actuator ,  

among the  three modes, based on t h e  maximum modal energy ranking. 

Figure ( 3 4 )  shows the  time history of the  amplitudes of v ibra t ion  

of the three ltasses when the MIMSC method is u t i l i z e d .  

The figure indicates t h a t  sharing small number of ac tua tors  among a 

larger number of modes has been effect ive in damping out quickly t h e  

amplitudes of v ib ra t ion  of a l l  t h e  modes. 

The ef fec t iveness  of the MIMSC can best be understood by considering 

Figures( 4-a) md (4-5). 
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Figure (4-a) - Control mode of highest modal energy for the spring-mass 
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Figure (4-b) - Haximum modal energy of the spring-mass system 
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~ i g u r e  ( 4 4 )  shows the  cont ro l  that has t he  highest  modal energy a t  
0 

any ins t an t  of time. It can be seen tha t  t h e  ac tua to r  is used first t o  

a t t enua te  t he  amplitude of v ib ra t ion  of the  t h i r d  mode, which cu r ren t ly  

has the  highest modal energy. After a small time i n t e r v a l  the  cont ro l  

ac t ion  is switched t o  con t ro l  the  seccnd mode s ince  its modal energy 
0 

becomes higher than t h e  energy of the first and t h e  t h i r d  modes. T h i s  

ac t ion  of time sharing the  single actuator  between the  modes continues 

u n t i l  a l l  three modes are brought under control .  Th i s  is demonstrated 

clearly i n  Figure (4-b) by the continuously decaying v ib ra t ion  energy of 

0 
the system. 

A better quan t i t a t ive  comparison between the three methods can be 

established baaed on t h e  displacement index ud which is given by : a 

a 

0 

0 

a 

t=t I 

t=O i=1 
ud = 6i24At 

where N is the  number of d.0.f. of system 

A t  is t he  in t eg ra t ion  time increment 

t4 is the  maximum time l i m i t  of i n t eg ra t ion  

(17) 

Table (2) summarizes the r e su l t s  of such a comparison when one 

ac tua to r  is placed a t  mass 1 as well as when two ac tua to r s  are used a t  

masses 1 and 2. 

The table ind ica t e s  clearly tha t  t he  MIMSC is very e f f ec t ive  i n  

damping out the v ib ra t ion  of t h e  3-mass system p a r t i c u l a r l y  when very 

small number a c t u a t o r s  are used a s  compared t o  t h e  IMSC and PI 



e 

Table (2) - Effect of the control algorithm on the displacement index for 
spring-mass system when one or two actuators are used w i t h  
R=100. 

e 

e 

0 

e 

0 

e 



e 

algorithms. 
e 

Figure (5)  shows a f l e x i b l e  s t e e l  can t i l eve r  beam modeled by a 9- 

f i n i t e  element model that has 9 d.0.f. of l i n e a r  t r ans l a t ions  and 9 

d.o.f. of angular ro t a t ions  wi th  node 1 f ixed.  The beam is 0.45m long and 

has rec tangular  c ros s  sec t ion  which is 0.0125m wide and 0.0021m thick. 

For t h i s  beam, the lowest natural  frequency is found t o  be 8.6Hz. In t h i s  

example, t h e  beam is subjected t o  a Impulsive load of magnitude 1.ON f o r  

e 

e 

l .Oms  a t  t h e  free end. 

e 
(a) Control by one llnear actuator 

e A force ac tua to r ,  placed at  the t i p  of the  f l e x i b l  

cont ro l  t he  v ib ra t ion  of t h i s  beam model. 

beam, I used t o  

F i g u r e s  (6 -a ) ,  (6-b) and  ( 6 4 )  show the time h i s t o r i e s  of the  

a m p l i t u d e s  of t r ansve r se  vibrat ions of the  beam a t  its free end as 

o b t a i n e d  b y  t h e  a p p l i c a t i o n  of I M S C ,  PI and MIMSC a lgo r i thms  

respect ively.  

0 

0 

T h e  f i g u r e s  i n d i c a t e  t h a t  t h e  IMSC is a g a i n  s u c c e s s f u l  in 

suppressing the  lowest mode of vibrat ion but a l l  the  higher modes remain 

t o t a l l y  unduped.  On the contrary, the P I  and HIMSC methods exhibi t  

complete oont ro l  over a l l  the  modes. However, the  response of t he  system 

e 

0 
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lnSC method ( 1 force actualor)  

a 
a. 

0 .  

Figure ( 6 )  - Time history of the amplitudes of transverse vibration of 
cantilever beam using IWC, P I  and MIMSC methods w i t h  one 
linear actuator ( R =  1000) 



a 

when using t h e  HZMSC method ind ica t e s  f a s t e r  decay of t h e  v ibra t ion  than 

the P I  method. Furthermore, w i t h  the MIMSC method, t h e  maximum amplitude 
a 

of o s c i l l a t i o n  of the  beam is about 66.1% and 28.8% lower than those 

obtained by the  P I  method and t h e  IMSC method respect ively.  e 

Figures ( 7 4 )  and (7-b) show t h e  mode of t h e  highest modal energy a t  

any time as well as t h e  i n s t a n t a n e o u s  modal energy of t h e  beam 

respec t ive ly  when the control  act ion is based on the  HIMSC method. 
a 

[b) Control by one t o m e  aotuator a 

When a single torque ac tua tor ,  placed a t  element 1, I s  used t o  

con t ro l  t he  v ib ra t ion  of t h e  f l e x i b l e  cant i lever  beam, then the  resulting 

time histories of the amplitudes of transverse v ibra t ion  of the beam t i p  

are as shown in Figure (8-a), (8-b) and (8-0) f o r  RISC, PI and MIMSC 

c o n t r o l l e r s  respect ively.  

a 

a 

Again, t h e  figures emphasize t h a t  t he  MIMSC method damp out  a l l  the  

v i b r a t i o n  modes ef fec t ive ly .  But ,  in P I  method, the beam continue t o  

v i b r a t e  without decaying w i t h  an amplitude higher t h a n  those in IMSC and 

MIMSC methods. Th i s  is because the e r r o r s  created by the  least-square 

approximation of 18 modal forces  by one physical  force is very high t h a t  

renders  t h e  feedback control  law ineffect ive.  

a 

a 

a Quan t i t a t ive ly ,  the  comparison of t he  three method when a force  or 

torque a c t u a t o r s  are used is given in Table ( 3 ) .  

a 
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Figure (7-a) - Control mode of highest modal energy for the cantilever 
beam 
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Figure (7-b) - Haximum modal energy of cantilever beam 
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Figure ( 8 )  - Time history of the amplitudes of transverse vibration of 
cantilever beam using IMSC, P I  and MIMSC methods with one 
torque actuator (R=1000) 



Table ( 3 )  - Effect of the control algorithm on the displacement index for 
cantilever beam when using one linear or rotary actuator with  

a 
R= 1000. 



e 

This paper has presented a comparative study between three a c t i v e  
e 

c o n t r o l  a l g o r i t h m s ,  I M S C ,  P I  and M I M S C ,  which are s u i t a b l e  f o r  

con t ro l l i ng  large f l e x i b l e  systems. 

0 
The s tudy showed that when small number of ac tua tors  are used t o  

c o n t r o l  large number of modes then the MIMSC r e s u l t s  i n  faster and 

e f f e c t i v e  s u p p r e s s i o n  of t h e  vibrat ions.  The IMSC method is found, 

however, t o  be e f f ec t ive  i n  damping out t he  amplitudes of low frequency 

modes but  due t o  t he  fact that the  IMSC does not account f o r  cont ro l  

s p i l l o v e r  it is demonstrated here that the  high frequency modes remain 

uncontrolled.  

0 

0 

a With the  P I  method it is shown that the i n e x a c t  r ea l i za t ion  of t h e  

modal c o n t r o l l e r  can r e s u l t  in slower damping of the v ibra t ion  when t h e  

number of ac tua to r s  (MI is  not far smaller than the number of control led 

modes ( 8 ) .  But when M<<N t he  least square nature of the P I  would r e s u l t  

i n  degradation of the  con t ro l l e r  performance as demonstrated c l e a r l y  in 

t h e  case  of t he  cant i lever  beam. 

a 

e 
The study emphasized the potent ia l  of the MIMSC f o r  being a viable  

and e f f i c i e n t  method fo r  cont ro l l ing  the v ibra t ions  of large systems wi th  

only f e w  ac tua tors .  0 
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