314 research outputs found

    Habitat filtering determines spatial variation of macroinvertebrate community traits in northern headwater streams

    Get PDF
    Although our knowledge of the spatial distribution of stream organisms has been increasing rapidly in the last decades, there is still little consensus about trait-based variability of macroinvertebrate communities within and between catchments in near-pristine systems. Our aim was to examine the taxonomic and trait based stability vs. variability of stream macroinvertebrates in three high-latitude catchments in Finland. The collected taxa were assigned to unique trait combinations (UTCs) using biological traits. We found that only a single or a highly limited number of taxa formed a single UTC, suggesting a low degree of redundancy. Our analyses revealed significant differences in the environmental conditions of the streams among the three catchments. Linear models, rarefaction curves and beta-diversity measures showed that the catchments differed in both alpha and beta diversity. Taxon- and trait-based multivariate analyses also indicated that the three catchments were significantly different in terms of macroinvertebrate communities. All these findings suggest that habitat filtering, i.e., environmental differences among catchments, determines the variability of macroinvertebrate communities, thereby contributing to the significant biological differences among the catchments. The main implications of our study is that the sensitivity of trait-based analyses to natural environmental variation should be carefully incorporated in the assessment of environmental degradation, and that further studies are needed for a deeper understanding of trait-based community patterns across near-pristine streams

    Multiscale Drivers of Water Chemistry of Boreal Lakes and Streams

    Get PDF
    The variability in surface water chemistry within and between aquatic ecosystems is regulated by many factors operating at several spatial and temporal scales. The importance of geographic, regional-, and local-scale factors as drivers of the natural variability of three water chemistry variables representing buffering capacity and the importance of weathering (acid neutralizing capacity, ANC), nutrient concentration (total phosphorus, TP), and importance of allochthonous inputs (total organic carbon, TOC) were studied in boreal streams and lakes using a method of variance decomposition. Partial redundancy analysis (pRDA) of ANC, TP, and TOC and 38 environmental variables in 361 lakes and 390 streams showed the importance of the interaction between geographic position and regional-scale variables. Geographic position and regional-scale factors combined explained 15.3% (streams) and 10.6% (lakes) of the variation in ANC, TP, and TOC. The unique variance explained by geographic, regional, and local-scale variables alone was <10%. The largest amount of variance was explained by the pure effect of regional-scale variables (9.9% for streams and 7.8% for lakes), followed by local-scale variables (2.9% and 5.8%) and geographic position (1.8% and 3.7%). The combined effect of geographic position, regional-, and local-scale variables accounted for between 30.3% (lakes) and 39.9% (streams) of the variance in surface water chemistry. These findings lend support to the conjecture that lakes and streams are intimately linked to their catchments and have important implications regarding conservation and restoration (management) endeavors

    Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions

    Get PDF
    Ecologists and economists have long talked past each other, but climate change presents similar threats to both groups. Water may serve as the best means of finding a common cause and building a new vision of ecological and economic sustainability, especially in the developing world

    Trophic strategy of Atlantirivulus riograndensis (Cyprinodontiformes: Rivulidae), a non-annual rivulid threatened by extinction, in a perennial environment, Brazil)

    Get PDF
    Rivulidae includes non-annual fish of perennial habitats and annual fish of temporary wetlands. The objective of this research was to investigate the trophic strategy of Atlantirivulus riograndensis in a perennial environment. Sampling occurred in an environmental conservation unit in the Pampa biome, Brazil. Quantification of the diet followed the volumetric method. Consumption of autochthonous material as the main food source of the species followed the pattern of Rivulidae. Species is zooplanktonic when young. Food spectrum is broadened and insectivorousness increases with ontogeny, revealing a specialist trend in the feeding strategy of A. riograndensis. The most diverse feeding occurs in the spring and summer seasons in which the presence of larger fish was more frequent than in other seasons. The increased consumption of microcrustaceans in the fall was related to smaller individuals, captured in greater quantities in this post-reproductive period. The lowest diversity of dietary items occurs during the winter and may reflect the lower diversity of food resources available in this season or the transition from juvenile to adult diet, with consumption of autochthonous Diptera by medium sized fish.Rivulidae inclui peixes não anuais de habitats perenes e peixes anuais de alagados temporários. O objetivo desta pesquisa foi investigar a estratégia trófica de Atlantirivulus riograndensis em um ambiente perene. A amostragem ocorreu em uma unidade de conservação ambiental no bioma Pampa, Brasil. A quantificação da dieta seguiu o método volumétrico. O consumo de material autóctone como principal recurso alimentar da espécie seguiu o padrão da família Rivulidae. A espécie é zooplanctívora quando juvenil. O espectro alimentar é ampliado e a tendência à insetivoria aumenta com a ontogenia, revelando traços especialistas na estratégia alimentar de A. riograndensis. A alimentação mais diversificada ocorreu na primavera e no verão, estações em que a presença dos peixes maiores foi frequente que em outras estações. O aumento no consumo de microcrustáceos no inverno foi relacionado aos indivíduos menores, capturados em maior quantidade neste período pós-reprodutivo. A menor diversidade de itens alimentares ocorreu durante o inverno e pode refletir uma menor diversidade de recursos alimentares disponíveis nesta época do ano ou a transição da dieta de juvenil para adulto, com consumo de Diptera autóctone por peixes de tamanho médio
    corecore