

River Research and Applications

# Seasonal Effects of a Hydropeaking Dam on a Downstream Benthic Macroinvertebrate Community

| Journal:                         | River Research and Applications                                                                                                                                                                                                                                                           |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Manuscript ID                    | RRA-18-0337.R2                                                                                                                                                                                                                                                                            |
| Wiley - Manuscript type:         | Research Article                                                                                                                                                                                                                                                                          |
| Date Submitted by the<br>Author: | n/a                                                                                                                                                                                                                                                                                       |
| Complete List of Authors:        | Mihalicz, Jordan; University of Saskatchewan, School of Environment and<br>Sustainability<br>Jardine, Timothy; University of Saskatchewan,<br>Baulch, Helen; University of Saskatchewan, School of Environment and<br>Sustainability<br>Phillips, Iain; Saskatchewan Watershed Authority, |
| Keywords:                        | large river, river health, seasonality, Northern Great Plains, biotic index, hydropower dam, benthos                                                                                                                                                                                      |
|                                  |                                                                                                                                                                                                                                                                                           |



| 2        |     |                                                                                                     |
|----------|-----|-----------------------------------------------------------------------------------------------------|
| 3<br>4   | 1   | Seasonal Effects of a Hydropeaking Dam on a Downstream Benthic Macroinvertebrate                    |
| 5<br>6   | 2   | Community                                                                                           |
| 7        |     |                                                                                                     |
| 8<br>9   | 3   |                                                                                                     |
| 10       | 4   | Running head: Hydropeaking effects on benthic macroinvertebrates                                    |
| 11<br>12 |     |                                                                                                     |
| 13       | 5   |                                                                                                     |
| 14       |     |                                                                                                     |
| 15       | 6   | Jordan E. Mihalicz, Timothy D. Jardine, Helen M. Baulch, Iain D. Phillips                           |
| 16       |     |                                                                                                     |
| 17       | 7   | University of Saskatchewan, Saskatoon, SK, Canada                                                   |
| 18<br>10 |     |                                                                                                     |
| 20       | 8   | Corresponding Author: Tim Jardine                                                                   |
| 21       |     |                                                                                                     |
| 22       | 9   | Email: tim.jardine@usask.ca                                                                         |
| 23       | 10  |                                                                                                     |
| 24<br>25 | 10  | Acknowledgements                                                                                    |
| 26       | 11  | This approach was summarized for wighty by the Network Spice and Engineering                        |
| 27       | 11  | This research was supported infancially by the Natural Sciences and Engineering                     |
| 28       | 12  | Personal Council and Sask Dowar, We thank Stanhan Srayka Jay Sagin Kata Prostia Michala             |
| 29       | 12  | Research Council and Saski ower. We mank stephen Stayko, Jay Sagin, Kate Frestie, Michela           |
| 30<br>31 | 13  | Carriere Renee Carriere Solomon Carriere Derek Green Kristin Painter, and David Janz for            |
| 32       | 15  | Curriere, Renee Curriere, Boronion Curriere, Derek Green, Kristin Funder, und Duvid Sunz for        |
| 33       | 14  | their countless hours of assistance in the field and the lab Kyla Bas provided the R scripts to run |
| 34       |     |                                                                                                     |
| 35       | 15  | CCA, and Marcy Bast, Bob Brua, Christy Morrissey, John-Mark Davies and two anonymous                |
| 30<br>37 |     |                                                                                                     |
| 38       | 16  | reviewers provided helpful comments on earlier versions of this manuscript.                         |
| 39       |     |                                                                                                     |
| 40       | 17  |                                                                                                     |
| 41       |     |                                                                                                     |
| 42<br>43 | 18  | Abstract                                                                                            |
| 43       |     |                                                                                                     |
| 45       | 19  | As more hydroelectric dams regulate rivers to meet growing energy demands, there is                 |
| 46       |     |                                                                                                     |
| 47       | 20  | ongoing concern about downstream effects, including impacts on downstream benthic                   |
| 48       |     |                                                                                                     |
| 49<br>50 | 21  | macroinvertebrate (BMI) communities. Hydropeaking is a common hydroelectric practice where          |
| 51       |     |                                                                                                     |
| 52       | 22  | short-term variation in power production leads to large and often rapid fluctuations in discharge   |
| 53       | ••• |                                                                                                     |
| 54       | 23  | and water level. There are key knowledge gaps on the ecosystem impacts of hydropeaking in           |
| 55<br>56 |     |                                                                                                     |
| 57       |     |                                                                                                     |
| 58       |     |                                                                                                     |
| 59       |     |                                                                                                     |

59

| 2                                |    |                                                                                                   |
|----------------------------------|----|---------------------------------------------------------------------------------------------------|
| 3<br>4                           | 24 | large rivers, the seasonality of these impacts, and whether dams can be managed to lessen         |
| 5<br>6                           | 25 | impacts. We assessed how patterns of hydropeaking affect abundance, taxonomic richness and        |
| 7<br>8                           | 26 | relative tolerance of BMIs in the Saskatchewan River (Saskatchewan, Canada). Reaches              |
| 9<br>10<br>11                    | 27 | immediately (<2km) downstream of the dam generally had high densities of BMIs and                 |
| 12<br>13                         | 28 | comparable taxonomic diversity relative to upstream locations but were characterized by lower     |
| 14<br>15                         | 29 | ratios of sensitive (e.g. Ephemeroptera, Plecoptera, Trichoptera) to tolerant (e.g. Chironomidae) |
| 16<br>17                         | 30 | taxa. The magnitude of effect varied with seasonal changes in discharge. Understanding the        |
| 18<br>19<br>20                   | 31 | effects of river regulation on BMI biodiversity and river health has implications for mitigating  |
| 21<br>22                         | 32 | the impacts of hydropeaking dams on downstream ecosystems. While we demonstrated that a           |
| 23<br>24                         | 33 | hydropeaking dam may contribute to a significantly different downstream BMI assemblage, we        |
| 25<br>26<br>27                   | 34 | emphasize that seasonality is a key consideration. The greatest differences between upstream and  |
| 27<br>28<br>29                   | 35 | downstream locations occurred in spring, suggesting standard methods of late summer and fall      |
| 30<br>31                         | 36 | sampling may underestimate ecosystem-scale impacts.                                               |
| 32<br>33                         | 37 |                                                                                                   |
| 34<br>35<br>26                   | 38 | <b>Keywords:</b> hydropower dam, benthos, large river, river health, seasonality, Northern Great  |
| 37<br>38                         | 39 | Plains, biotic index                                                                              |
| 39<br>40                         | 40 |                                                                                                   |
| 41                               |    |                                                                                                   |
| 42<br>43                         | 41 | Introduction                                                                                      |
| 44<br>45<br>46                   | 42 | At present, a large majority of the world's river systems have at least one dam                   |
| 40<br>47<br>48                   | 43 | somewhere along their length (Nilsson et al., 2005), with more planned for the future (Zarfl et   |
| 49<br>50                         | 44 | al., 2015). The effects of dams on rivers have been well documented over the last several         |
| 51<br>52                         | 45 | decades, from changes in river thermal (Olden & Naiman 2010; Phillips et al., 2015) and flow      |
| 53<br>54<br>55<br>56<br>57<br>58 | 46 | regimes (Poff et al., 2007) to altered biological assemblages (Poff & Zimmerman, 2010) and        |

Page 3 of 32

1

# **River Research and Applications**

| 2        |
|----------|
| 3        |
| 1        |
| 4        |
| 5        |
| 6        |
| 7        |
| ,        |
| 8        |
| 9        |
| 10       |
| 11       |
| 11       |
| 12       |
| 13       |
| 14       |
| 15       |
| 10       |
| 16       |
| 17       |
| 18       |
| 10       |
| 20       |
| 20       |
| 21       |
| 22       |
| 23       |
| 20       |
| 24       |
| 25       |
| 26       |
| 27       |
| 27       |
| 28       |
| 29       |
| 30       |
| 21       |
| 31       |
| 32       |
| 33       |
| 31       |
| 24       |
| 35       |
| 36       |
| 37       |
| 20       |
| 38       |
| 39       |
| 40       |
| 41       |
| 40       |
| 42       |
| 43       |
| 44       |
| 45       |
| 16       |
| 46       |
| 47       |
| 48       |
| 40       |
| 49<br>50 |
| 50       |
| 51       |
| 52       |
| 53       |
| 22       |
| 54       |
| 55       |
| 56       |
| 57       |
| 57       |
|          |
| 58       |

| 47 | water quality (Phillips et al., 2016). While it is a clean, renewable energy source compared to oil, |
|----|------------------------------------------------------------------------------------------------------|
| 48 | gas, and coal burning, hydroelectric power generation also creates environmental impacts             |
| 49 | (Rosenberg et al., 1997). Hydropeaking, where rapid changes in discharge are used by                 |
| 50 | hydroelectric facilities to produce power during daily peak demand, has recently become a focus      |
| 51 | for understanding effects on instream benthic macroinvertebrate communities (Jones 2013a;            |
| 52 | Jones 2013b; Armanini et al., 2014; Kennedy et al., 2016), but the impacts of hydropeaking           |
| 53 | operations are generally less well known compared with the other dam impacts described above.        |
| 54 | Benthic macroinvertebrates (BMIs) have been widely recognized as indicators of                       |
| 55 | ecosystem integrity due to their wide tolerance spectrum to a variety of environmental               |
| 56 | disturbances (Bonada et al., 2006). Sensitive taxa such as most mayflies (Ephemeroptera),            |
| 57 | stoneflies (Plecoptera), and caddisflies (Trichoptera) tend to decrease in abundance and diversity   |
| 58 | in impacted rivers, while relatively tolerant taxa, including many chironomid species and            |
| 59 | oligochaetes, remain. Several metrics have been developed that use BMIs to quantify aquatic          |
| 60 | health, including the percentage of Ephemeroptera, Plecoptera, and Trichoptera (%EPT), the           |
| 61 | ratio of EPT to Chironomidae (EPT/C), and the Modified Hilsenhoff's Biotic Index (BI; Plafkin        |
| 62 | et al., 1989 in Mandaville, 2002). These metrics are often used in assessing the health of           |
| 63 | wadeable streams and small rivers but are rarely applied to large river systems (Jackson et al.,     |
| 64 | 2010). The EPT/C metric has long been used for evaluating the effects of general environmental       |
| 65 | disturbances (Karr, 1991; Hannaford & Resh, 1995). However, it is uncertain if the BI metric can     |
| 66 | indicate physical stress from hydropeaking, as its calculation uses taxa tolerance values that were  |
| 67 | developed for organic pollution. Studies are needed to test if BI can act as a general metric of     |
| 68 | disturbance.                                                                                         |
|    |                                                                                                      |

Large rivers in the North American Great Plains naturally experience predictable fluctuations in discharge and depth throughout the year, rising with snowmelt and mountain runoff in the late spring and returning to baseflow by late summer (Poff, 1996). Dams regulate these fluctuations, often attenuating flood conditions by discharging less water over a longer period than the natural spring meltwater surge. Despite knowledge that patterns in BMI diversity and abundance are seasonally dependent (Linke et al., 1999), studies that have examined the impact of hydropeaking dams on BMI communities (e.g. Jones, 2013a,b) are often conducted during the late summer, presumably to capture the highest diversity and later life stages of BMIs. This sample design does not capture the univoltine BMIs that develop and emerge in the spring and early summer, such as winter stoneflies and many mayfly species. How seasonal variations in flow overlaid by hydropeaking affect BMI life histories is poorly characterized.

Here we assessed the potential effects of a daily hydropeaking dam on downstream BMI communities by comparing five downstream locations with three upstream reference locations sampled monthly during the ice-free season in 2014. We hypothesized that the BMI assemblages immediately downstream of the dam are affected by the hydropeaking operations and that river health, as calculated using BMI metrics such as EPT/C and BI, is compromised at these locations through a combination of abrupt changes in flow, considerable fluctuations in water level, and repeated wetting and drying of the riverbed (Kennedy et al., 2016). We also examined the potential for seasonal variation in effects by evaluating BMI assemblages across five months that varied considerably in flow conditions. Given the large number of extant dams, the common use of hydropeaking, and ongoing dam construction in many regions (Zarfl et al., 2015), understanding the effects of hydropeaking is a key step towards better understanding the costs and benefits of alternative flow management regimes (Jones, 2014).

| 2                                      |     |                                                                                                                       |
|----------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------|
| 3<br>4                                 | 92  |                                                                                                                       |
| 5<br>6<br>7                            | 93  | Methods                                                                                                               |
| 7<br>8<br>9                            | 94  | The Saskatchewan River basin in Canada is one of North America's largest river basins                                 |
| 10<br>11                               | 95  | (405,864 km <sup>2</sup> ), spanning three provinces and includes one of the largest freshwater deltas in the         |
| 12<br>13                               | 96  | world (Partners for the Saskatchewan River Basin, 2009). This sand-dominated river begins in                          |
| 14<br>15<br>16                         | 97  | the Rocky Mountains of Alberta and discharges into Lake Winnipeg in Manitoba. Two main                                |
| 10<br>17<br>18                         | 98  | branches, the North Saskatchewan and South Saskatchewan rivers, merge to form the mainstem                            |
| 19<br>20                               | 99  | Saskatchewan River (Fig. 1). Ice cover on the river typically lasts from late November to April,                      |
| 21<br>22<br>22                         | 100 | although this can vary annually. Two large hydro dams were commissioned along the river                               |
| 25<br>24<br>25                         | 101 | system: the Gardiner Dam in 1967 on the South Saskatchewan River and the E.B. Campbell                                |
| 26<br>27                               | 102 | Dam in 1963 on the mainstem of the Saskatchewan River. Together, these dams alter the                                 |
| 28<br>29                               | 103 | seasonal and daily flow regime downstream (Gober & Wheater, 2014). The E.B. Campbell dam                              |
| 30<br>31<br>32                         | 104 | formed the Tobin Lake reservoir, and from 1963 to 2004, this hydropeaking dam operated in                             |
| 33<br>34                               | 105 | accordance with electricity demand, causing sudden changes in river depth downstream and                              |
| 35<br>36                               | 106 | occasionally stranding fish. This prompted Fisheries and Oceans Canada to establish a minimum                         |
| 37<br>38<br>39                         | 107 | flow requirement of 75 m <sup>3</sup> s <sup>-1</sup> as a way to mitigate changes in water level. However, the river |
| 40<br>41                               | 108 | downstream continues to experience daily changes in discharge and depth due to hydropeaking                           |
| 42<br>43                               | 109 | practices (Fig. 2, Fig. A1); these changes attenuate downstream but are observable as far as 60                       |
| 44<br>45<br>46                         | 110 | km from the dam (Euteneier, 2002).                                                                                    |
| 40<br>47<br>48                         | 111 | A total of eight locations were sampled during the ice-free season of 2014: three                                     |
| 49<br>50                               | 112 | upstream locations were chosen as reference areas, while five downstream locations were                               |
| 51<br>52                               | 113 | selected ranging from immediately below the dam (2 km) to $\sim$ 50 km downstream (Fig. 1).                           |
| 53<br>54<br>55<br>56<br>57<br>58<br>59 | 114 | During the study, the ratio of daily maximum to daily minimum flows released from the dam                             |

was  $1.2 \pm 0.2$  in June,  $1.8 \pm 0.9$  in July,  $3.0 \pm 0.9$  in August and  $4.6 \pm 1.5$  in September (Fig. 2). Locations were chosen knowing that hydrological impacts of hydropeaking attenuate with increasing distance from the dam (e.g. Moog, 1993), but the two downstream sites most affected by hydropeaking are DS2 and DS3 because they are wider with shallower-pitched shorelines compared with DS1 where the channel is narrower (Table A1, Watkinson et al. 2018). The furthest site downstream, DS4, experiences lessened water level variability because of attenuation but here the river still rises and falls approximately 1 m during summer hydropeaking (T. Jardine, unpublished data). Below the dam, low water levels occur in early morning after reduced power generation overnight, so sites DS1 to DS3 were typically sampled in order starting early in the day to limit sampling in the varial zone and maximize sampling in the permanently wetted zone. In August and September, site DS4 was sampled at both high and low water to test for differences in communities in the varial and permanently wetted zone at this location. Samples were taken once per month from May-September and corresponded to seasonal changes in flows and associated hydropeaking, as higher discharges occur associated with the spring freshet (May to mid-July) compared to the daily hydropeaking schedule followed later in the season (mid-July to September) (Fig. 2). This period constitutes the bulk of the ice-free season (typically from April to November), and covers the period where water temperatures 

exceeded 12°C, above which most BMI taxa can grow and complete their life cycles. The location immediately below the dam is in a spillway channel (hereafter labeled "SW"), a part of the original river channel that was bypassed during construction. This channel normally consists of a series of small, isolated pools with little or no flow, except when discharges from the reservoir exceed the capacity of the power station (~1000 m<sup>3</sup>s<sup>-1</sup>), at which point the spillway

Page 7 of 32

1

#### **River Research and Applications**

| 2        |      |
|----------|------|
| 3        | 138  |
| 4        | 150  |
| 5<br>6   | 139  |
| 7<br>8   | 140  |
| 9<br>10  | 141  |
| 11<br>12 | 142  |
| 13<br>14 | 1/2  |
| 15<br>16 | 143  |
| 17<br>18 | 144  |
| 19<br>20 | 145  |
| 21<br>22 | 146  |
| 23<br>24 | 147  |
| 25<br>26 | 148  |
| 27<br>28 | 149  |
| 29<br>30 |      |
| 31<br>32 | 150  |
| 33<br>34 | 151  |
| 35<br>36 | 152  |
| 37<br>38 | 153  |
| 39<br>40 | 154  |
| 41<br>42 | 155  |
| 43<br>44 |      |
| 45<br>46 | 156  |
| 47       |      |
| 48<br>49 | 157  |
| 50<br>51 | 158  |
| 52<br>53 | 159  |
| 54<br>55 | 1.00 |
| 56       | 160  |
| 57       |      |
| 58<br>59 |      |

60

| 138 | gates are opened and these pools fully connect and flow. During the months of May and June   |
|-----|----------------------------------------------------------------------------------------------|
| 139 | 2014, the channel had high flow as the dam was releasing water from the spring melt, whereas |
| 140 | the water returned to pools during the months of July, August, and September.                |

141 The sampling methods in this study followed a modified kick and sweep protocol for 142 large rivers as described in the Saskatchewan Northern Great Plains Ecosystem Health 143 Assessment Manual (MoE & SWA, 2012). Benthic macroinvertebrates were collected using a 144 standard D-frame kicknet with a 500 µm mesh and 0.3 m opening. Each sampled location was 145 divided into 3 sub-locations, each 100 m apart. The first sub-location was chosen haphazardly 146 and the remaining two were selected 100 m upstream from the previous. Samples were taken 147 from shore to the deepest wadeable depth (1 transect per sub-location) or until 1 minute of 148 sampling time elapsed. The entire contents of each sweep were preserved using 95% ethanol. 149 Macroinvertebrates were identified to genus or, when practical, to species. Saskatchewan-150 specific keys were used to identify Ephemeroptera (Webb, 2002), Plecoptera (Dosdall, 1976), 151 Trichoptera (Smith, 1984), and Hemiptera (Brooks & Kelton, 1967). All other taxa were 152 identified using Merritt et al. (2008). Sample area was estimated using the size of the net (0.3 m) 153 and the total length of each sampling transect, which was then used to estimate BMI densities. 154 River health was estimated using taxa tolerance values summarized in Mandaville (2002) 155 to calculate an overall BI using the following formula:

$$BI = \frac{\sum x_i t_i}{n} \qquad (\text{Eq. 1})$$

157 where  $x_i$  is the number of individuals of a species,  $t_i$  is the tolerance value of a species, and n is 158 the total number of individuals. A low BI score indicates low levels of environmental stress 159 (typically pollution) as there are more sensitive taxa present, whereas a high BI score is 160 indicative of a stressed environment with a high proportion of tolerant taxa. The tolerance values

| 1          |
|------------|
| 2          |
| 3          |
| 4          |
| 5          |
| 6          |
| 7          |
| 8          |
| 9          |
| 10         |
| 11         |
| 12         |
| 13         |
| 14         |
| 15         |
| 16         |
| 17         |
| 18         |
| 19         |
| 20         |
| 21         |
| 22         |
| 23         |
| 24         |
| 25         |
| 26         |
| 27         |
| 28         |
| 29         |
| 30<br>21   |
| 3 I<br>2 2 |
| 2∠<br>22   |
| 27         |
| 25         |
| 36         |
| 30         |
| 38         |
| 30         |
| 40         |
| 40<br>41   |
| 42         |
| 43         |
| 44         |
| 45         |
| 46         |
| 47         |
| 48         |
| 49         |
| 50         |
| 51         |
| 52         |
| 53         |
| 54         |
| 55         |
| 56         |
| 57         |
| 58         |
| 59         |

| 161 | for macroinvertebrates were originally based on their resistance to organic pollution (Plafkin et          |
|-----|------------------------------------------------------------------------------------------------------------|
| 162 | al., 1989, in Mandaville, 2002). In contrast, the use of EPT/C is known for its applicability to a         |
| 163 | variety of environmental disturbances beyond pollution (Mandaville, 2002). An EPT/C score                  |
| 164 | was also calculated for each location, using the ratio of sensitive taxa (Ephemeroptera,                   |
| 165 | Plecoptera, and Trichoptera) to Chironomidae (a relatively tolerant group) plus one (EPT/C+1)              |
| 166 | to account for areas without chironomids. To assess community diversity, a Shannon's diversity             |
| 167 | score was calculated for each location. BI, EPT/C and Shannon's diversity scores were                      |
| 168 | calculated for all 3 sub-locations before calculating mean scores for the site. A series of habitat        |
| 169 | variables, including water quality (pH, conductivity, turbidity, total suspended solids, total             |
| 170 | nitrogen and phosphorus, benthic and suspended chlorophyll a, dissolved organic carbon) and                |
| 171 | substrate, was collected at each site on each visit (Supplementary material).                              |
| 172 | To compare upstream versus downstream communities, we used canonical                                       |
| 173 | correspondence analysis (CCA), analysis of similarities (ANOSIM), and similarity percentages               |
| 174 | (SIMPER). CCA was done using R (version 3.4.2; R Project for Statistical Computing, Vienna,                |
| 175 | Austria) with the vegan and lmom packages. The ANOSIM and SIMPER analyses were done                        |
| 176 | using PRIMER Version 6.1.13 (PRIMER-E software, Plymouth, United Kingdom; Clarke &                         |
| 177 | Warwick, 2001). Prior to performing these analyses, we chose to adjust the community matrix by             |
| 178 | removing rare taxa that had a total abundance of $\leq 5$ and had an occurrence of $\leq 4$ in the matrix. |
| 179 | Though removal can negatively impact otherwise significant differences in a dataset (Cao et al.,           |
| 180 | 2001), rare taxa can create 'noise' that might obscure otherwise clear patterns (e.g. Reece et al.,        |
| 181 | 2001). Non-benthic taxa were completely removed from the dataset. Using this subset, the data              |
| 182 | were $log_{(n+1)}$ transformed and used to calculate a taxa-by-taxa dissimilarity matrix using the         |
| 183 | Bray-Curtis dissimilarity metric, which is commonly used for analyzing BMI assemblages                     |

(Clarke & Warwick, 2001; Phillips et al., 2015). ANOSIM was used to compare average rank similarities of the benthic communities upstream and downstream of E.B. Campbell dam. To evaluate which taxa were most responsible for any dissimilarity between upstream and downstream locations, a family-level similarity percentages (SIMPER) analysis was performed. All tests were done separately for each month of analysis. As our main purpose was to identify whether hydropeaking affects the BMI assemblage downstream, the site SW was omitted from the CCA, ANOSIM, and SIMPER analyses as it was not affected by hydropeaking. **Results** A total of 67,506 individuals from 237 different invertebrate taxa were collected. The number of taxa at each location ranged from 13 to 53 (Fig. 3, Table A2). Mayflies were the most common taxa, with 17 families overall (Fig. 3, Table A2), and ranged in abundance from 2 to 8,816 individuals m<sup>-2</sup>. On the whole, taxonomic richness tended to increase throughout the sampling season, with the greatest change shown at SW, 2 km downstream of the dam in the spillway channel (Fig. 3). Further downstream (8-30km from dam), richness was generally lower

relative to sites US1 to US3 and SW. In contrast, DS4 (+53 km) was comparable to upstreamlocations.

In addition to changes in flow regime, the biophysical environment differed below the dam. In the river upstream of the dam, higher turbidity, TSS, and suspended chlorophyll *a* concentrations were typically observed relative to downstream (Table A2). In contrast, the downstream reaches appeared to have more benthic chlorophyll *a* and marginally higher DOC values compared to upstream. Higher concentrations of benthic chlorophyll immediately below the dam were observed between July and September (Table A3). Total phosphorus was

| •                | 207 | marginally higher at upstream locations, whereas pH, conductivity, and total nitrogen were             |
|------------------|-----|--------------------------------------------------------------------------------------------------------|
|                  | 208 | similar among locations both upstream and downstream. Mean daily temperature appeared to               |
|                  | 209 | fluctuate more at upstream locations compared to the regulated regime observed downstream              |
| 0<br>1           | 210 | (Fig. A2). Additionally, warmer and cooler temperatures were recorded upstream from May-July           |
| 2<br>3           | 211 | and August-September, respectively, relative to downstream locations (Fig. A2).                        |
| 4<br>5<br>6      | 212 | Average BMI density ranged from 39 to 2,477 individuals m <sup>-2</sup> (Fig. 4). Densities at         |
| 6<br>7<br>8      | 213 | upstream locations were relatively similar throughout the sampling season, whereas taxa had            |
| 9                | 214 | sharply increased densities at locations immediately below the dam (SW and DS1; +2 and +8              |
| 1                | 215 | km) from July-September (Fig. 4), largely due to an increase in tolerant taxa. Further                 |
| 3<br>4<br>5      | 216 | downstream (+21 to +53 km), densities were similar to those found upstream (Fig. 4).                   |
| 6<br>7           | 217 | Three indices of river health showed impairment at sites immediately below the dam.                    |
| 8<br>9           | 218 | Biotic index (BI) values were generally higher at SW (+2 km) and DS1 to DS3 (+8 to +28 km)             |
| 0<br>1           | 219 | (Fig. 5). Mean BI values ranged from 3.40 to 5.64 upstream of the dam across seasons and were          |
| 2<br>3<br>4      | 220 | higher below the dam (range 4.45 to 7.65), especially from May to July but this varied by              |
| 5<br>6           | 221 | location. The furthest site from the dam, DS4 (+53 km), had BI values that were within the range       |
| 7<br>8           | 222 | (95% confidence interval) of those observed at the upstream reaches in all months except July.         |
| 9<br>0<br>1      | 223 | Samples at this site taken at low and high water levels had similar BI values in August (low           |
| 2                | 224 | water = $5.21$ , high water = $4.92$ ) but different BI values in September (low water = $7.00$ , high |
| 4<br>5           | 225 | water = 5.74) because the latter low water sample contained only chironomids. Taxonomic                |
| 6<br>7           | 226 | richness at locations below the dam was comparable to those upstream (Fig. 3) but Shannon's            |
| 8<br>9<br>0      | 227 | diversity scores were generally higher at upstream locations compared to those immediately             |
| 1<br>2           | 228 | downstream of the dam, with only DS4 (+53 km) having values consistently comparable to those           |
| 3<br>4<br>5<br>6 | 229 | upstream (Fig. 6). Mean EPT/C+1 values were highest upstream of the dam (0.16 to 43.42 versus          |

# **River Research and Applications**

| 2                                                                                                 |     |                                                                                                     |
|---------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20 | 230 | 0.03 to 7.39 downstream) and, like the BI, had values comparable to the upstream reference          |
|                                                                                                   | 231 | locations at the location furthest from the dam (Fig. A3). In a comparison of monthly BI to         |
|                                                                                                   | 232 | EPT/C+1 scores, a general negative correlation was observed in the first three months of            |
|                                                                                                   | 233 | sampling, but not August and September (Fig. A3).                                                   |
|                                                                                                   | 234 | The benthic assemblage at SW (+2 km) and DS1 (+8 km) varied from other locations,                   |
|                                                                                                   | 235 | with high densities of tolerant taxa including amphipods and Caenis mayfly larvae from July-        |
|                                                                                                   | 236 | September. As these taxa are typically associated with lentic environments, the reach of the river  |
|                                                                                                   | 237 | downstream where these species were in high abundance was deemed the 'lentic impact zone.'          |
| 21<br>22                                                                                          | 238 | This zone extended at least 8 km downstream, and lentic taxa abundance generally decreased          |
| 23<br>24<br>25                                                                                    | 239 | with distance from the dam. To assess whether high amphipod densities at downstream locations       |
| 25<br>26<br>27                                                                                    | 240 | were the main influence for increased BI scores, the scores for all locations were calculated in    |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36                                                | 241 | the absence of amphipods. This had little effect on BI scores across all locations, indicating that |
|                                                                                                   | 242 | although they were present in high densities, amphipods were not the primary driver of BI           |
|                                                                                                   | 243 | scores.                                                                                             |
|                                                                                                   | 244 | Upstream and downstream locations had significantly different assemblages throughout                |
| 37<br>38                                                                                          | 245 | all months even when including the furthest downstream location (ANOSIM, Table A3).                 |
| 39<br>40<br>41                                                                                    | 246 | Corixidae (Hemiptera), Baetidae (Ephemeroptera), Chironomidae (Diptera), and Hydropsychidae         |
| 41<br>42<br>43                                                                                    | 247 | (Trichoptera) were among the families that contributed the most to differentiating upstream         |
| 44<br>45                                                                                          | 248 | locations from those downstream (SIMPER, Table A3). Assemblages at upstream locations               |
| 46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56                                    | 249 | separated from those sampled downstream, and those found immediately below the dam formed           |
|                                                                                                   | 250 | distinct clusters, whereas further locations (DS4; >50 km) become more similar to upstream          |
|                                                                                                   | 251 | communities (Fig. 7).                                                                               |

| 2<br>3               | 252 |                                                                                                      |
|----------------------|-----|------------------------------------------------------------------------------------------------------|
| 4<br>5<br>6          | 253 | Discussion                                                                                           |
| 7<br>8<br>0          | 254 | Large rivers are among the most impacted freshwater ecosystems in the world (Nilsson et              |
| 9<br>10<br>11        | 255 | al., 2005; Poff et al., 2007). Hydroelectric dams are common along these systems and the             |
| 12<br>13             | 256 | concerns of hydropeaking operations have only recently been fully addressed, despite the large       |
| 14<br>15<br>16       | 257 | number of dams that practice hydropeaking (e.g. Jones, 2013a; Kennedy et al., 2016). The scale       |
| 17<br>18             | 258 | and scarcity of large rivers like the Saskatchewan have made it difficult to quantify the effects of |
| 19<br>20             | 259 | anthropological disturbances, and traditional reference condition approaches often cannot be         |
| 21<br>22<br>22       | 260 | applied to these systems (Phillips et al., 2015). Additionally, the majority of hydropeaking         |
| 25<br>24<br>25       | 261 | studies have not considered the possible effects of seasonality on benthic communities as most of    |
| 26<br>27             | 262 | them are conducted in the late summer months (August-September) when the extent of flow              |
| 28<br>29             | 263 | variation can be high and the mean daily flows relatively low. Our key findings included altered     |
| 30<br>31<br>32       | 264 | benthic assemblages below the dam along with increased BI and decreased EPT/C scores                 |
| 33<br>34             | 265 | compared to upstream locations, indicative of deteriorated river health. Seasonality in              |
| 35<br>36             | 266 | hydropeaking was reflected in the changes to downstream BMI community tolerance, density,            |
| 37<br>38<br>30       | 267 | and diversity.                                                                                       |
| 39<br>40<br>41       | 268 | Immediately downstream of the dam in the spillway channel (SW; +2 km), the benthic                   |
| 42<br>43             | 269 | assemblage consisted mainly of tolerant taxa usually found in lentic environments (e.g.              |
| 44<br>45             | 270 | amphipods, Caenis mayfly larvae). These taxa were found in very high abundance from July-            |
| 46<br>47<br>48       | 271 | September after flow through this reach had ceased, but were absent from May-June samples            |
| 49<br>50             | 272 | when this channel was used as a spillway to accommodate high flows. Unlike the other                 |
| 51<br>52             | 273 | downstream reaches, SW was not subjected to daily hydropeaking from July-September,                  |
| 53<br>54<br>55<br>56 | 274 | resulting in little to no flow and much higher abundances of lentic taxa. Although it does not       |
| 57<br>58<br>59       |     |                                                                                                      |
| 60                   |     | http://mc.manuscriptcentral.com/rra                                                                  |

Page 13 of 32

#### **River Research and Applications**

| 1  |  |
|----|--|
| 2  |  |
| 3  |  |
| 4  |  |
| 5  |  |
| 6  |  |
| 7  |  |
| 8  |  |
| 9  |  |
| 10 |  |
| 11 |  |
| 12 |  |
| 12 |  |
| 17 |  |
| 14 |  |
| 15 |  |
| 10 |  |
| 17 |  |
| 18 |  |
| 19 |  |
| 20 |  |
| 21 |  |
| 22 |  |
| 23 |  |
| 24 |  |
| 25 |  |
| 26 |  |
| 27 |  |
| 27 |  |
| 20 |  |
| 29 |  |
| 30 |  |
| 31 |  |
| 32 |  |
| 33 |  |
| 34 |  |
| 35 |  |
| 36 |  |
| 37 |  |
| 38 |  |
| 39 |  |
| 40 |  |
| 41 |  |
| 42 |  |
| 43 |  |
| ΔΛ |  |
| 44 |  |
| 45 |  |
| 46 |  |
| 4/ |  |
| 48 |  |
| 49 |  |
| 50 |  |
| 51 |  |
| 52 |  |
| 53 |  |
| 54 |  |
| 55 |  |
| 56 |  |
| 57 |  |
| 50 |  |
| 20 |  |
| 59 |  |
| 60 |  |

reflect daily hydropeaking, SW is still subjected to seasonal changes in flow and more likely
reflects changes that would occur when large reservoirs are used primarily for extraction (e.g.
irrigation supply) and only release water during extreme high flow events.

278 Because amphipods have relatively high tolerance to environmental disturbances and 279 were found in high densities immediately below the dam, these areas had correspondingly high 280 BI values. Surprisingly, the removal of amphipods did little to change the BI scores across all 281 locations, even when their numbers were in the thousands. Therefore, downstream benthic 282 communities changed in composition in terms of their tolerance to disturbance and the dominant 283 taxon was not solely responsible for that change. Chironomidae were also found in very high 284 densities below the dam, a taxon that is highly tolerant to environmental disturbance. Amphipods 285 are a mainly lentic taxon that helped define the lentic impact zone found downstream. We 286 assume they were flushed downstream from the reservoir and previously isolated spillway pools 287 during high flows in May and June. It is recommended that the lentic impact zone be accounted 288 for in future projects and sampling designs that assess the effects of impoundments on river 289 health, as its size may vary annually and seasonally. Doing so would require classifying taxa as 290 lentic or lotic according to available guides (e.g. Merritt et al. 2008), determining if there are 291 spatial gradients in the proportion of lentic taxa, and removing those taxa from analysis as 292 appropriate. The macroinvertebrate community at the first riverine site downstream, DS1 (+8 293 km), also consisted of high densities of taxa in the filter-feeding functional group (e.g. 294 Hydropsychidae) from mid- to late summer, similar to findings in the regulated Magpie River 295 system (Jones, 2013a). As proposed by Richardson and Mackay (1991), these filter-feeding 296 communities are probably sustained by plankton that originated in the reservoir.

| 2         |
|-----------|
| 3         |
| 4         |
| 5         |
| 5<br>C    |
| 6         |
| 7         |
| 8         |
| 9         |
| 10        |
| 11        |
| 10        |
| 12        |
| 13        |
| 14        |
| 15        |
| 16        |
| 17        |
| 18        |
| 10        |
| 20        |
| 20        |
| 21        |
| 22        |
| 23        |
| 24        |
| 25        |
| 25        |
| 20        |
| 27        |
| 28        |
| 29        |
| 30        |
| 31        |
| 32        |
| 33        |
| 27        |
| 34        |
| 35        |
| 36        |
| 37        |
| 38        |
| 39        |
| 40        |
| тU<br>//1 |
| 41        |
| 42        |
| 43        |
| 44        |
| 45        |
| 46        |
| 47        |
| 48        |
| 10        |
| 47<br>50  |
| 50        |
| 51        |
| 52        |
| 53        |
| 54        |
| 55        |
| 55        |
| 50        |
| 5/        |
| 58        |
| 59        |
| 60        |

297 Further downstream (>20 km from the dam), BMI abundance and diversity were much 298 lower. At DS2 (+21 km) and DS3 (+28 km) in August and September, daily hydropeaking was 299 most severe because of a low-pitched shoreline that results in large changes in water level. Our 300 CCA shows that these two sites tend to be similar to each other yet distinct from other 301 downstream sites (Fig. 7). Macrophytes, which often harbor high BMI abundance relative to bare 302 substrate in deeper parts of the channel (Needham, 1934), were absent at sites between 21 and 53 303 km downstream, likely due to the change in substrate (cobble and coarse gravel to sand) and the 304 rapid fluctuations in water level resulting from daily hydropeaking (J. Mihalicz, pers. obs.). 305 Bejarano et al. (2018) reviewed the effects of hydropeaking on riverine plants and concluded that 306 abrupt changes in water level and flow have a marked effect on vegetation in the riparian zone. 307 This suggests that the absence of macrophyte growth at our downstream locations is likely due to 308 hydropeaking.

309 Water quality parameters differed substantially between upstream and downstream 310 locations, especially chlorophyll a (benthic and suspended) and turbidity (Table A1). These 311 differences may contribute to the change in benthic assemblage composition observed below the 312 dam (Fig. 7). Higher benthic chlorophyll a concentrations at locations immediately below the 313 dam, likely owing to greater light penetration in clearer waters, translate to greater food source 314 availability for BMIs, which may explain the dense populations of tolerant taxa found there 315 including gastropods and Caenid mayflies. Lower turbidity values downstream of the dam are 316 likely due to the loss of suspended load in the reservoir. These changes highlight how additional 317 physical alterations to river habitat resulting from hydropeaking can consequently affect water 318 quality and, ultimately, the biotic community (Melcher et al., 2017).

Page 15 of 32

#### **River Research and Applications**

Although literature on the effects of hydropeaking on river biota is becoming more common (e.g. Jones, 2014; Kennedy et al., 2016; Melcher et al., 2017), the macroinvertebrates in many studies are collected in late summer or early autumn. In doing so, it is probable that many emergent insect species are not accounted for, and thus any effects of hydropeaking on these taxa remain unknown. Benthic assemblages vary not only from one year to the next, but seasonally as well (Peterson et al., 2017). For example, in our data set, univoltine *Isoperla* sp. stoneflies were relatively common at upstream sites in May and June but were effectively absent in the remaining three months. Warmer waters upstream in May could also have accelerated development and emergence of this taxa. As the composition of the downstream macroinvertebrate communities changed from one month to the next with the emergence of some taxa, the overall tolerance of the community remained relatively high compared to upstream reaches. Yet differences were greatest in the months May to July, with all four nearest downstream sites falling outside the 95% confidence intervals defined by the upstream reference sites. This suggests that late summer/autumn sampling of BMI communities may underestimate the general effects of hydropeaking. However, the high water levels that we encountered during May and June meant that our sampling largely occurred in recently wetted areas at all locations, perhaps misrepresenting resident biota throughout the study system. The interplay between mean flow conditions, changes in extent of hydropeaking, and biotic sensitivity should be considered in individual rivers when considering sampling design. Despite our best efforts, studying large rivers presents a unique set of challenges. Their size can make it difficult to quantify the effects of impacts both longitudinally and laterally. In the present study, macroinvertebrates were sampled from one side of the river in the near-shore, 

341 varial zone, but not from deeper parts of the channel. Many species would not have been

collected with our methods, and the use of other techniques and instruments would be required to sample them (e.g. Peterson grab sampler, Hess sampler). Taxa that are sensitive to regular wetting and drying are more likely to be found in deeper areas of the channel below hydropeaking facilities, whereas tolerant species tend to inhabit the edge habitat (Jones, 2013b; Kjaerstad et al., 2018). This speaks to key questions regarding sampling design to understand impact. Our methods may be overly sensitive, showing a greater proportion of tolerant taxa than if the whole channel were sampled. This can be beneficial in assessing impacts but may overestimate them at the ecosystem scale. In the case of the Saskatchewan River below E.B. Campbell, the varial zone can constitute up to one-third the wetted width (DFO 2018). As such, changes to the BMI community in this zone only would still constitute a considerable change to the overall community, even if the assemblage in the permanently-wetted zone remains unchanged. Determining river health often requires the use of several metrics to assign a score to the reach in question. In our assessment, BI scores for reaches in the Saskatchewan River system were negatively correlated with their EPT/C (Fig. A3). However, an important drawback of using EPT/C values is the use of specific taxa. The high densities of tolerant *Caenis* mayflies in August and September at downstream sites indicated healthy river conditions according to EPT/C, despite the BI metric suggesting otherwise (Fig. A3). Our study, in conjunction with others (e.g. Borisko et al., 2007), suggests that the tolerance values for organic pollution compiled by Mandaville (2002) for use with the Modified Hilsenhoff BI may be applicable to environmental disturbances more generally in aquatic systems, and that metrics considering the entire benthic community may be preferred when determining ecosystem integrity. 

Page 17 of 32

#### **River Research and Applications**

The present study has illustrated that the hydropeaking E.B. Campbell Dam supports a downstream BMI assemblage that has high densities and comparable species richness relative to upstream, but this assemblage is shifted to one characterized by tolerant, lentic-associated taxa. A key piece of environmental legislation in Canada, the Fisheries Act, currently assesses impacts of industrial operations on aquatic environments based on their effects on fishes, namely through their habitat including provision of food (Fisheries Act, 1985). As a result, this legislation would view the increased abundances of BMIs downstream of the dam as a positive effect while ignoring the change in the assemblage and, more importantly, overall tolerance to disturbance. Despite the establishment of a minimum flow requirement in 2004, discharge and water depth continue to change on a daily basis with effects apparent as far as 53 km downstream (Fig. A1). Hydropeaking is an important means of matching power production to power requirements; however, we have found evidence that hydropeaking may contribute to the alteration of downstream biotic communities. Minimum flow requirements have many benefits, but more work is required to understand how to best manage dams to better mimic the natural flow regime, especially in systems dominated by multiple control structures that have competing demands for water. Integrated systems approaches that allow trade-offs among industrial and ecological uses will help mitigate current impacts of hydropower and hydropeaking and maintain its importance as part of the renewable energy portfolio. 

### 7 383 Literature Cited

384 Armanini, D. G., Chaumel, A. I., Monk, W. A., Marty, J., Smokorowski, K., Power, M., &
385 Baird, D. J. (2014). Benthic macroinvertebrate flow sensitivity as a tool to assess effects

| 3<br>4         | 386 | of hydropower related ramping activities in streams in Ontario (Canada). Ecological             |
|----------------|-----|-------------------------------------------------------------------------------------------------|
| 5<br>6         | 387 | Indicators, 46, 466-476. https://doi.org/10.1016/j.ecolind.2014.07.018                          |
| 7<br>8<br>9    | 388 | Bejarano, M. D., Jansson, R., & Nilsson, C. 2018. The effects of hydropeaking on riverine       |
| 10<br>11       | 389 | plants: a review. Biological Reviews, 93, 658-673.                                              |
| 12<br>13<br>14 | 390 | Bonada, N., Prat, N., Resh, V. H., & Statzner, B. (2006). Developments in aquatic insect        |
| 15<br>16       | 391 | biomonitoring: A comparative analysis of recent approaches. Annual Review of                    |
| 17<br>18<br>10 | 392 | Entomology, 51, 495-523. https://doi.org/10.1146/annurev.ento.51.110104.151124                  |
| 19<br>20<br>21 | 393 | Borisko, J. P., Kilgour, B. W., Stanfield, L. W., & Jones, F. C. (2007). An evaluation of rapid |
| 22<br>23       | 394 | bioassessment protocols for stream benthic invertebrates in southern Ontario, Canada.           |
| 24<br>25<br>26 | 395 | Water Quality Research Journal of Canada, 42(3), 184–193.                                       |
| 20<br>27<br>28 | 396 | Brooks, A. R., & Kelton, L. A. (1967). Aquatic and Semiaquatic Heteroptera of Alberta,          |
| 29<br>30       | 397 | Saskatchewan, and Manitoba (Hemiptera). Memoirs of the Entomological Society of                 |
| 31<br>32<br>33 | 398 | Canada, 99(S51), 7–92.                                                                          |
| 34<br>35       | 399 | Cao, Y., Larsen, D. P., & Thorne, R. St-J. (2001). Rare species in multivariate analysis for    |
| 36<br>37       | 400 | bioassessment: some considerations. Journal of the North American Benthological                 |
| 38<br>39<br>40 | 401 | Society, 20, 144-153.                                                                           |
| 41<br>42       | 402 | Clarke, K. & Warwick, R. (2001). Change in Marine Communities: An Approach to Statistical       |
| 43<br>44       | 403 | Analysis and Interpretation. Primer-E Ltd., Plymouth, UK.                                       |
| 45<br>46<br>47 | 404 | Dosdall L. M. 1976. The stoneflies (Plecoptera) of Saskatchewan. Masters thesis. University of  |
| 48<br>49       | 405 | Saskatchewan, Saskatoon, Canada. Available from: http://hdl.handle.net/10388/6353.              |
| 50<br>51<br>52 | 406 | Euteneier, D. 2002. Water fluctuations in the Saskatchewan River Delta complex, Cumberland      |
| 53<br>54       | 407 | Lake area. Saskatchewan Water Corporation. Regina, 24 pp.                                       |
| 55<br>56       |     |                                                                                                 |
| 57<br>58       |     |                                                                                                 |
| 59             |     |                                                                                                 |

| 1<br>2                                                                                                        |     |                                                                                                    |
|---------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------|
| 3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22 | 408 | Fisheries Act. RSC 1985. c F-14.                                                                   |
|                                                                                                               | 409 | Gober, P., & Wheater, H. S. (2014). Socio-hydrology and the science-policy interface: a case       |
|                                                                                                               | 410 | study of the Saskatchewan River basin. Hydrology and Earth System Sciences, 18(4),                 |
|                                                                                                               | 411 | 1413-1422. https://doi.org/10.5194/hess-18-1413-2014                                               |
|                                                                                                               | 412 | Hannaford, M. J., & Resh, V. H. (1995). Variability in macroinvertebrate rapid-bioassessment       |
|                                                                                                               | 413 | surveys and habitat assessments in a northern California stream. Journal of the North              |
|                                                                                                               | 414 | American Benthological Society, 14(3), 430–439. https://doi.org/10.2307/1467209                    |
|                                                                                                               | 415 | Jackson, J. K., Battle, J. M., & Sweeney, B. W. (2010). Monitoring the health of large rivers with |
|                                                                                                               | 416 | macroinvertebrates: Do dominant taxa help or hinder the assessment? River Research and             |
| 23<br>24<br>25                                                                                                | 417 | Applications, 26, 931-947.                                                                         |
| 26<br>27                                                                                                      | 418 | Jones, N. E. (2013a). Patterns of benthic invertebrate richness and diversity in the regulated     |
| 28<br>29<br>30<br>31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41                              | 419 | Magpie River and neighbouring natural rivers. River Research and Applications, 29(9),              |
|                                                                                                               | 420 | 1090–1099. https://doi.org/10.1002/rra.2595                                                        |
|                                                                                                               | 421 | Jones, N. E. (2013b). Spatial patterns of benthic invertebrates in regulated and natural rivers.   |
|                                                                                                               | 422 | River Research and Applications, 29(3), 343-351. https://doi.org/10.1002/rra.1601                  |
|                                                                                                               | 423 | Jones, N. E. (2014). The dual nature of hydropeaking rivers: is ecopeaking possible? River         |
|                                                                                                               | 424 | Research and Applications, 30(4), 521-526. https://doi.org/10.1002/rra.2653                        |
| 42<br>43                                                                                                      | 425 | Karr, J. R. (1991). Biological integrity - a long-neglected aspect of water-resource management.   |
| 44<br>45<br>46<br>47<br>48<br>49<br>50                                                                        | 426 | Ecological Applications, 1(1), 66-84. https://doi.org/10.2307/1941848                              |
|                                                                                                               | 427 | Kennedy, T. A., Muehlbauer, J. D., Yackulic, C. B., Lytle, D. A., Miller, S. W., Dibble, K. L.,    |
|                                                                                                               | 428 | Baxter, C. V. (2016). Flow Management for Hydropower Extirpates Aquatic Insects,                   |
| 51<br>52<br>53                                                                                                | 429 | Undermining River Food Webs. Bioscience, 66(7), 561-575.                                           |
| 55<br>55                                                                                                      |     |                                                                                                    |
| 56<br>57                                                                                                      |     |                                                                                                    |
| 58<br>59<br>60                                                                                                |     | http://mc.manuscriptcentral.com/rra                                                                |

| 3<br>4         | 430 | Kjaerstad, G., Arnekleiv, J.V., Speed, J.D.M., and Herland, A.K. 2018. Effects of hydropeaking  |
|----------------|-----|-------------------------------------------------------------------------------------------------|
| 5<br>6         | 431 | on benthic invertebrate community composition in two central Norwegian rivers. River            |
| 7<br>8         | 432 | Research and Applications, 34(3), 218-231. https://doi.org/10.1002/rra.3241                     |
| 9<br>10<br>11  | 433 | Linke, S., Bailey, R. C., & Schwindt, J. (1999). Temporal variability of stream bioassessments  |
| 12<br>13       | 434 | using benthic macroinvertebrates. Freshwater Biology, 42(3), 575-584.                           |
| 14<br>15       | 435 | https://doi.org/10.1046/j.1365-2427.1999.00492.x                                                |
| 16<br>17<br>18 | 436 | Mandaville, S. M. (2002). Benthic macroinvertebrates in freshwaters - taxa tolerance values,    |
| 19<br>20       | 437 | metrics, and protocols (No. Project H-1) (pp. 1–128).                                           |
| 21<br>22       | 438 | Melcher, A. H., Bakken, T. H., Friedrich, T., Greimel, F., Humer, N., Schmutz, S., Webb, J.     |
| 23<br>24<br>25 | 439 | A. (2017). Drawing together multiple lines of evidence from assessment studies of               |
| 25<br>26<br>27 | 440 | hydropeaking pressures in impacted rivers. Freshwater Science, 36(1), 000-000.                  |
| 28<br>29       | 441 | Merritt, R. W., Cummins, K. W., & Berg, M. B. (2008). An Introduction to the Aquatic Insects of |
| 30<br>31       | 442 | North America. Kendall/Hunt Publishing Company.                                                 |
| 32<br>33<br>34 | 443 | MoE, & SWA. (2012). Saskatchewan Northern Great Plains Ecosystem Health Assessment              |
| 35<br>36       | 444 | Manual. Regina, Saskatchewan, Canada: Saskatchewan Ministry of Environment.                     |
| 37<br>38       | 445 | Moog, O. (1993). Quantification of Daily Peak Hydropower Effects on Aquatic Fauna and           |
| 39<br>40<br>41 | 446 | Management to Minimize Environmental Impacts. Regulated Rivers-Research &                       |
| 41<br>42<br>43 | 447 | Management, 8(1-2), 5-14. https://doi.org/10.1002/rrr.3450080105                                |
| 44<br>45       | 448 | Needham, P. R. (1934). Quantitative studies of stream bottom foods. Transactions of the         |
| 46<br>47<br>48 | 449 | American Fisheries Society, 64, 238–247. https://doi.org/10.1577/1548-                          |
| 48<br>49<br>50 | 450 | 8659(1934)64[238:QSOSBF]2.0.CO;2                                                                |
| 51<br>52<br>53 |     |                                                                                                 |
| 54<br>55       |     |                                                                                                 |
| 56<br>57       |     |                                                                                                 |
| 58<br>59<br>60 |     | http://mc.manuscriptcentral.com/rra                                                             |
|                |     |                                                                                                 |

| 1<br>2<br>2                |     |                                                                                               |
|----------------------------|-----|-----------------------------------------------------------------------------------------------|
| 3<br>4                     | 451 | Nilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow         |
| 5<br>6<br>7                | 452 | regulation of the world's large river systems. Science, 308(5720), 405-408.                   |
| 7<br>8<br>9                | 453 | https://doi.org/10.1126/science.1107887                                                       |
| 10<br>11                   | 454 | Olden, J. D., & Naiman, R. J. (2010). Incorporating thermal regimes into environmental flows  |
| 12<br>13                   | 455 | assessments: modifying dam operations to restore freshwater ecosystem integrity.              |
| 14<br>15<br>16             | 456 | Freshwater Biology, 55(1), 86–107. https://doi.org/10.1111/j.1365-2427.2009.02179.x           |
| 16<br>17<br>18             | 457 | Partners for the Saskatchewan River Basin (2009). From the Mountains to the Sea: The State of |
| 19<br>20                   | 458 | the Saskatchewan River Basin (pp. 1–165).                                                     |
| 21<br>22                   | 459 | Peterson M. G., L. Hunt, E. E. D. Marineau, and V. H. Resh. 2017. Long-term studies of        |
| 23<br>24<br>25             | 460 | seasonal variability enable evaluation of macroinvertebrate response to an acute oil spill    |
| 25<br>26<br>27             | 461 | in an urban Mediterranean-climate stream. Hydrobiologia, 797, 319-333.                        |
| 28<br>29<br>30<br>31<br>32 | 462 | Phillips, I. D., Davies, JM., Bowman, M. F., & Chivers, D. P. (2016). Macroinvertebrate       |
|                            | 463 | communities in a Northern Great Plains river are strongly shaped by naturally occurring       |
| 33<br>34<br>25             | 464 | suspended sediments: implications for ecosystem health assessment. Freshwater Science,        |
| 35<br>36<br>37             | 465 | 35(4), 1354–1364.                                                                             |
| 38<br>39                   | 466 | Phillips, I. D., Pollock, M. S., Bowman, M. F., McMaster, D. G., & Chivers, D. P. (2015).     |
| 40<br>41                   | 467 | Thermal alteration and macroinvertebrate response below a large Northern Great Plains         |
| 42<br>43                   | 468 | reservoir. Journal of Great Lakes Research, 41, 155-163.                                      |
| 45<br>46                   | 469 | Poff, N. L. (1996). A hydrogeography of unregulated streams in the United States and an       |
| 47<br>48                   | 470 | examination of scale-dependence in some hydrological descriptors. Freshwater Biology,         |
| 49<br>50                   | 471 | 36(1), 71–91. https://doi.org/10.1046/j.1365-2427.1996.00073.x                                |
| 51<br>52<br>53             | 472 | Poff, N. LeRoy, Olden, J. D., Merritt, D. M., & Pepin, D. M. (2007). Homogenization of        |
| 55<br>54<br>55<br>56<br>57 | 473 | regional river dynamics by dams and global biodiversity implications. Proceedings of the      |
| 58<br>59                   |     |                                                                                               |
| 60                         |     | http://mc.manuscriptcentral.com/rra                                                           |

| 1                    |     |                                                                                                  |
|----------------------|-----|--------------------------------------------------------------------------------------------------|
| 2<br>3<br>4          | 474 | National Academy of Sciences of the United States of America, 104(14), 5732–5737.                |
| 5<br>6               | 475 | https://doi.org/10.1073/pnas.0609812104                                                          |
| 7<br>8               | 476 | Poff, N. LeRoy, & Zimmerman, J. K. H. (2010). Ecological responses to altered flow regimes: a    |
| 9<br>10<br>11        | 477 | literature review to inform the science and management of environmental flows.                   |
| 12<br>13             | 478 | Freshwater Biology, 55(1), 194–205. https://doi.org/10.1111/j.1365-2427.2009.02272.x             |
| 14<br>15             | 479 | Reece P. F., T. B. Reynoldson, J. S. Richardson, and D. M. Rosenberg. 2001. Implications of      |
| 16<br>17<br>18       | 480 | seasonal variation for biomonitoring with predictive models in the Fraser River                  |
| 19<br>20             | 481 | catchment, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 58,             |
| 21<br>22             | 482 | 1411-1418.                                                                                       |
| 23<br>24<br>25       | 483 | Richardson, J. S., & Mackay, R. J. (1991). Lake Outlets and the Distribution of Filter Feeders - |
| 25<br>26<br>27       | 484 | an Assessment of Hypotheses. Oikos, 62(3), 370–380. https://doi.org/10.2307/3545503              |
| 28<br>29             | 485 | Rosenberg, D. M., Berkes, F., Bodaly, R. A., Hecky, R. E., Kelly, C. A., & Rudd, J. W. M.        |
| 30<br>31             | 486 | (1997). Large-scale impacts of hydroelectric development. Environmental Reviews, 5(1),           |
| 32<br>33<br>34       | 487 | 27–54. https://doi.org/10.1139/er-5-1-27                                                         |
| 35<br>36             | 488 | Smith D. H. 1984. Systematics of Saskatchewan Trichoptera larvae with emphasis on species        |
| 37<br>38             | 489 | from boreal streams. Doctoral thesis, University of Saskatchewan, Saskatoon, Canada).            |
| 39<br>40             | 490 | Retrieved from http://hdl.handle.net/10388/6425                                                  |
| 41<br>42<br>43       | 491 | Watkinson, D.A., Ghamry, H., and Enders, E.C. 2018. Information to support the assessment of     |
| 44<br>45             | 492 | the instream flow needs for fish and fish habitat in the Saskatchewan River downstream           |
| 46<br>47             | 493 | of the E.B. Campbell Hydroelectric Station. DFO Canadian Science Advisory Secretariat            |
| 48<br>49<br>50       | 494 | Research Document 2018/nnn. XX pp.                                                               |
| 50<br>51<br>52       | 495 | Webb J. M. 2002. The mayflies of Saskatchewan. Masters thesis. University of Saskatchewan,       |
| 53<br>54<br>55<br>56 | 496 | Saskatoon, Canada. Available from: http://hdl.handle.net/10388/etd-10142008-151436.              |
| 57<br>58             |     |                                                                                                  |
| 59<br>60             |     | http://mc.manuscriptcentral.com/rra                                                              |

| 1<br>2                  |     |                                                                                               |
|-------------------------|-----|-----------------------------------------------------------------------------------------------|
| 3                       | 497 | Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., & Tockner, K. (2015). A global boom in |
| 5<br>6<br>7             | 498 | hydropower dam construction. Aquatic Sciences, 77(1), 161–170.                                |
| 7<br>8<br>9<br>10<br>11 | 499 | https://doi.org/10.1007/s00027-014-0377-0                                                     |
|                         | 500 |                                                                                               |
| 12<br>13                | 501 |                                                                                               |
| 14<br>15<br>16          | 502 |                                                                                               |
| 10<br>17<br>18          | 503 |                                                                                               |
| 19<br>20                | 504 |                                                                                               |
| 21<br>22                |     |                                                                                               |
| 23<br>24                |     |                                                                                               |
| 25<br>26<br>27          |     |                                                                                               |
| 28<br>29                |     |                                                                                               |
| 30<br>31                |     |                                                                                               |
| 32<br>33                |     |                                                                                               |
| 34<br>35<br>36          |     |                                                                                               |
| 37<br>38                |     |                                                                                               |
| 39<br>40                |     |                                                                                               |
| 41<br>42                |     |                                                                                               |
| 43<br>44<br>45          |     |                                                                                               |
| 43<br>46<br>47          |     |                                                                                               |
| 48<br>49                |     |                                                                                               |
| 50<br>51                |     |                                                                                               |
| 52<br>53                |     |                                                                                               |
| 54<br>55<br>56          |     |                                                                                               |
| 50<br>57<br>58          |     |                                                                                               |
| 59<br>60                |     | http://mc.manuscriptcentral.com/rra                                                           |

### 505 Figure legends

Fig. 1: The portion of the Saskatchewan River system sampled in this study. Blue dots indicate
upstream (reference) reaches, red dots are downstream (test) locations, and the split dot indicates
the sampling location immediately downstream of E.B. Campbell Dam. The inset illustrates the
sample area's location in Saskatchewan, Canada.

**Fig. 2:** Discharge data for the Saskatchewan River above and below E.B. Campbell Dam for

511 June-December of 2014 (Environment Canada gauges 05KD007 and 05KD003). The erratic

512 changes in discharge downstream of the dam are the result of hydropeaking. Data from 12:00 am

513 on July 18 to 12:00 am on July 21, 2014 illustrates the daily peaks and troughs in discharge

5 514 experienced by the river downstream due to hydropeaking (inset). Data were not available for the

515 upstream gauge prior to June 10<sup>th</sup>.

516 Fig. 3: Benthic macroinvertebrate orders present at each location (labels as in Figure 1) in the
517 Saskatchewan River across the months of May to September 2014.

Fig. 4: Benthic macroinvertebrate density  $(\log_{x+1})$  across the sampling area versus the distance of

519 each location from E.B. Campbell Dam, shown as a vertical dotted line, in kilometers. Distances

520 upstream/downstream of the dam are depicted as negative/positive numbers, respectively. Grey

521 boxes indicate the 95% CI for the upstream locations. Distances from the dam for each location

<sup>3</sup> 522 are as follows: US1 (-210 km), US2 (-194 km), US3 (-114 km), SW (+2 km), DS1 (+8 km), DS2

523 (+21 km), DS3 (+28 km), and DS4 (+53 km).

Fig. 5: Biotic index scores for each location from May-September 2014 versus distance from
 525 E.B. Campbell Dam. Labels as in Figure 4.

**Fig. 6:** Shannon Diversity Index scores for each location from May-September 2014 versus

527 distance from E.B. Campbell Dam. Labels as in Figure 4.

Fig. 7: Canonical correspondence analysis illustrating the differences in benthic macroinvertebrate community structure at 7 locations along the Saskatchewan River. Locations upstream of E.B. Campbell dam are green, downstream are red, orange, yellow, and light blue. Numbers in brackets represent distance upstream (negative) and downstream (positive) from E.B. Campbell Dam in kilometers. Turb = turbidity, TSS = total suspended solids; SChla = suspended chlorophyll a; BChla = benthic chlorophyll a; DSub = dominant substrate 



Figure 1





Fig. 2: Discharge data for the Saskatchewan River above and below E.B. Campbell Dam for June-December of 2014 (Environment Canada gauges 05KD007 and 05KD003). The erratic changes in discharge downstream of the dam are the result of hydropeaking. Data from 12:00 am on July 18 to 12:00 am on July 21, 2014 illustrates the daily peaks and troughs in discharge experienced by the river downstream due to hydropeaking (inset).





- 57
- 58
- 59 60



Fig. 3: Benthic macroinvertebrate orders present at each location (labels as in Figure 1) in the Saskatchewan River across the months of May to September 2014.



Fig. 4: Benthic macroinvertebrate density (logx+1) across the sampling area versus the distance of each location from E.B. Campbell Dam, shown as a vertical dotted line, in kilometers. Distances upstream/downstream of the dam are depicted as negative/positive numbers, respectively. Grey boxes indicate the 95% CI for the upstream locations. Distances from the dam for each location are as follows: US1 (-210 km), US2 (-194 km), US3 (-114 km), SW (+2 km), DS1 (+8 km), DS2 (+21 km), DS3 (+28 km), and DS4 (+53 km).

529x564mm (72 x 72 DPI)











Fig. 7: Canonical correspondence analysis illustrating the differences in benthic macroinvertebrate community structure at 7 locations along the Saskatchewan River. Locations upstream of E.B. Campbell dam are green, downstream are red, orange, yellow, and light blue. Numbers in brackets represent distance upstream (negative) and downstream (positive) from E.B. Campbell Dam in kilometers. Turb = turbidity, TSS = total suspended solids; SChla = suspended chlorophyll a; BChla = benthic chlorophyll a; DSub = dominant substrate

190x254mm (96 x 96 DPI)