1,979 research outputs found

    Fairness Beyond Disparate Treatment & Disparate Impact: Learning Classification without Disparate Mistreatment

    Full text link
    Automated data-driven decision making systems are increasingly being used to assist, or even replace humans in many settings. These systems function by learning from historical decisions, often taken by humans. In order to maximize the utility of these systems (or, classifiers), their training involves minimizing the errors (or, misclassifications) over the given historical data. However, it is quite possible that the optimally trained classifier makes decisions for people belonging to different social groups with different misclassification rates (e.g., misclassification rates for females are higher than for males), thereby placing these groups at an unfair disadvantage. To account for and avoid such unfairness, in this paper, we introduce a new notion of unfairness, disparate mistreatment, which is defined in terms of misclassification rates. We then propose intuitive measures of disparate mistreatment for decision boundary-based classifiers, which can be easily incorporated into their formulation as convex-concave constraints. Experiments on synthetic as well as real world datasets show that our methodology is effective at avoiding disparate mistreatment, often at a small cost in terms of accuracy.Comment: To appear in Proceedings of the 26th International World Wide Web Conference (WWW), 2017. Code available at: https://github.com/mbilalzafar/fair-classificatio

    Immunodepletion in xenotransplantation

    Get PDF
    Xenograft transplantation is perhaps the most immunologically difficult problem in transplantation today. An overwhelming hyperacute rejection reaction (HAR) occurs within minutes of organ implantation. Preformed antibodies are thought to initiate this process. We used a pig-to-dog renal xenograft transplant model and investigated methods of decreasing the severity of hyperacute rejection. Female pigs weighing 15-20 kg were used as donors. Recipients were mongrel dogs weighing 15-25 kg. Experimental dogs were all given a number of treatments of IgG depletion using an antibody removal system (Dupont-Excorim). This machine immunoadsorbs plasma against a column containing immobilized staphylococcal protein A, which is known to bind the IgG Fc receptor. An 84% reduction in the IgG levels and a 71% reduction in IgM levels was achieved. Postoperative assessment was made of urine output, time to onset of HAR, and histopathological examination of the rejected kidneys. Although cross-matches between donor lymphocytes and recipient sera remained strongly positive in the treated dogs, there was a two- to fourfold reduction in the titers. The time to onset of HAR was prolonged in the experimental group, and the urine output was increased slightly. The histopathologic changes in the experimental group generally showed signs of HAR, but of less intensity than in the nonimmunodepleted control group. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted

    On Spacetimes with Constant Scalar Invariants

    Full text link
    We study Lorentzian spacetimes for which all scalar invariants constructed from the Riemann tensor and its covariant derivatives are constant (CSICSI spacetimes). We obtain a number of general results in arbitrary dimensions. We study and construct warped product CSICSI spacetimes and higher-dimensional Kundt CSICSI spacetimes. We show how these spacetimes can be constructed from locally homogeneous spaces and VSIVSI spacetimes. The results suggest a number of conjectures. In particular, it is plausible that for CSICSI spacetimes that are not locally homogeneous the Weyl type is IIII, IIIIII, NN or OO, with any boost weight zero components being constant. We then consider the four-dimensional CSICSI spacetimes in more detail. We show that there are severe constraints on these spacetimes, and we argue that it is plausible that they are either locally homogeneous or that the spacetime necessarily belongs to the Kundt class of CSICSI spacetimes, all of which are constructed. The four-dimensional results lend support to the conjectures in higher dimensions.Comment: 25 pages, 1 figure, v2: minor changes throughou

    ENERGETIC PARTICLE DIFFUSION IN CRITICALLY BALANCED TURBULENCE

    Get PDF
    Observations and modeling suggest that the fluctuations in magnetized plasmas exhibit scale-dependent anisotropy, with more energy in the fluctuations perpendicular to the mean magnetic field than in the parallel fluctuations and the anisotropy increasing at smaller scales. The scale dependence of the anisotropy has not been studied in full-orbit simulations of particle transport in turbulent plasmas so far. In this paper, we construct a model of critically balanced turbulence, as suggested by Goldreich & Sridhar, and calculate energetic particle spatial diffusion coefficients using full-orbit simulations. The model uses an enveloped turbulence approach, where each two-dimensional wave mode with wavenumber k ⊥ is packed into envelopes of length L following the critical balance condition, Lk –2/3 ⊥, with the wave mode parameters changing between envelopes. Using full-orbit particle simulations, we find that both the parallel and perpendicular diffusion coefficients increase by a factor of two, compared to previous models with scale-independent anisotropy

    Design of Cationic Multi-Walled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication

    Get PDF
    Polo-Like Kinase (PLK1) has been identified as a potential target in cancer gene therapy via chemical or genetic inhibitory approaches. The biomedical applications of chemically functionalized carbon nanotubes (f-CNTs) in cancer therapy have been studied due to their ability to efficiently deliver siRNA intracellularly. In this study, we established the capacity of cationic MWNT-NH3+ to deliver the apoptotic siRNA against PLK1 (siPLK1) in Calu6 tumor xenografts by direct intratumoural injections. A direct comparison with cationic liposomes was made. This study validates the PLK1 gene as a potential target in cancer gene therapy including lung cancer, as demonstrated by the therapeutic efficacy of siPLK1:MWNT-NH3+ complexes and their ability to significantly improve animal survival. Biological analysis of the siPLK1:MWNT-NH3+ treated tumors by RT-PCR and Western blot, in addition to TUNEL staining confirmed the biological functionality of the siRNA intratumourally, suggesting that tumor eradication was due to PLK1 knockdown. Furthermore, by using a fluorescently labelled, non-coding siRNA sequence complexed with MWNT-NH3+, we established for the first time that the improved therapeutic efficacy observed in f-CNT-based siRNA delivery is directly proportional to the enhanced siRNA retention in the solid tumor and subsequent uptake by tumor cells after local administration in vivo

    Kinetic Turbulence

    Full text link
    The weak collisionality typical of turbulence in many diffuse astrophysical plasmas invalidates an MHD description of the turbulent dynamics, motivating the development of a more comprehensive theory of kinetic turbulence. In particular, a kinetic approach is essential for the investigation of the physical mechanisms responsible for the dissipation of astrophysical turbulence and the resulting heating of the plasma. This chapter reviews the limitations of MHD turbulence theory and explains how kinetic considerations may be incorporated to obtain a kinetic theory for astrophysical plasma turbulence. Key questions about the nature of kinetic turbulence that drive current research efforts are identified. A comprehensive model of the kinetic turbulent cascade is presented, with a detailed discussion of each component of the model and a review of supporting and conflicting theoretical, numerical, and observational evidence.Comment: 31 pages, 3 figures, 99 references, Chapter 6 in A. Lazarian et al. (eds.), Magnetic Fields in Diffuse Media, Astrophysics and Space Science Library 407, Springer-Verlag Berlin Heidelberg (2015

    Towards a global land surface climate fiducial reference measurements network

    Get PDF
    There is overwhelming evidence that the climate system has warmed since the instigation of instrumental meteorological observations. The Fifth Assessment Report of the Intergovernmental Panel on Climate Change concluded that the evidence for warming was unequivocal. However, owing to imperfect measurements and ubiquitous changes in measurement networks and techniques, there remain uncertainties in many of the details of these historical changes. These uncertainties do not call into question the trend or overall magnitude of the changes in the global climate system. Rather, they act to make the picture less clear than it could be, particularly at the local scale where many decisions regarding adaptation choices will be required, both now and in the future. A set of high-quality long-term fiducial reference measurements of essential climate variables will enable future generations to make rigorous assessments of future climate change and variability, providing society with the best possible information to support future decisions. Here we propose that by implementing and maintaining a suitably stable and metrologically well-characterized global land surface climate fiducial reference measurements network, the present-day scientific community can bequeath to future generations a better set of observations. This will aid future adaptation decisions and help us to monitor and quantify the effectiveness of internationally agreed mitigation steps. This article provides the background, rationale, metrological principles, and practical considerations regarding what would be involved in such a network, and outlines the benefits which may accrue. The challenge, of course, is how to convert such a vision to a long-term sustainable capability providing the necessary well-characterized measurement series to the benefit of global science and future generations

    Cosmic-ray pitch-angle scattering in imbalanced mhd turbulence simulations

    Get PDF
    Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfven waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.Comment: 13 pages, 15 figures. Accepted by Ap

    Solar Wind Turbulence and the Role of Ion Instabilities

    Get PDF
    International audienc
    corecore