43 research outputs found

    New model substrates for enzymes hydrolysing polyethyleneterephthalate and polyamide fibres

    Get PDF
    Recently the potential of enzymes for surface hydrophilisation and/or functionalisation of polyethyleneterephthalate (PET) and polyamide (PA) has been discovered. However, there was no correlation between enzyme class/activity (e.g. esterase, lipase, cutinase) and surface hydrolysis of these polymers and consequently no simple assay to estimate this capability. Enzymes active on the model substrates bis (benzoyloxyethyl) terephthalate and adipic acid bishexyl-amide, were also capable of increasing the hydrophilicity of PET and PA. When dosed at the identical activity on 4-nitrophenyl butyrate, only enzymes from Thermobifida fusca, Aspergillus sp., Beauveria sp. and commercial enzymes (TEXAZYME PES sp5 and Lipase PS) increased the hydrophilicity of PET fibres while other esterases and lipases did not show any effect. Activity on PET correlated with the activity on the model substrate. Hydrophilicity of fibres was greatly improved based on increases in rising height of up to 4.3 cm and the relative decrease of water absorption time between control and sample of the water was up to 76%. Similarly, enzymes increasing the hydrophilicity of PA fibres such as from Nocardia sp., Beauveria sp. and F. solani hydrolysed the model substrate; however, there was no common enzyme activity (e.g. protease, esterase, amidase) which could be attributed to all these enzymes

    Comparative and Joint Analysis of Two Metagenomic Datasets from a Biogas Fermenter Obtained by 454-Pyrosequencing

    Get PDF
    Biogas production from renewable resources is attracting increased attention as an alternative energy source due to the limited availability of traditional fossil fuels. Many countries are promoting the use of alternative energy sources for sustainable energy production. In this study, a metagenome from a production-scale biogas fermenter was analysed employing Roche's GS FLX Titanium technology and compared to a previous dataset obtained from the same community DNA sample that was sequenced on the GS FLX platform. Taxonomic profiling based on 16S rRNA-specific sequences and an Environmental Gene Tag (EGT) analysis employing CARMA demonstrated that both approaches benefit from the longer read lengths obtained on the Titanium platform. Results confirmed Clostridia as the most prevalent taxonomic class, whereas species of the order Methanomicrobiales are dominant among methanogenic Archaea. However, the analyses also identified additional taxa that were missed by the previous study, including members of the genera Streptococcus, Acetivibrio, Garciella, Tissierella, and Gelria, which might also play a role in the fermentation process leading to the formation of methane. Taking advantage of the CARMA feature to correlate taxonomic information of sequences with their assigned functions, it appeared that Firmicutes, followed by Bacteroidetes and Proteobacteria, dominate within the functional context of polysaccharide degradation whereas Methanomicrobiales represent the most abundant taxonomic group responsible for methane production. Clostridia is the most important class involved in the reductive CoA pathway (Wood-Ljungdahl pathway) that is characteristic for acetogenesis. Based on binning of 16S rRNA-specific sequences allocated to the dominant genus Methanoculleus, it could be shown that this genus is represented by several different species. Phylogenetic analysis of these sequences placed them in close proximity to the hydrogenotrophic methanogen Methanoculleus bourgensis. While rarefaction analyses still indicate incomplete coverage, examination of the GS FLX Titanium dataset resulted in the identification of additional genera and functional elements, providing a far more complete coverage of the community involved in anaerobic fermentative pathways leading to methane formation

    "Digitalisierung braucht Zeit, um Mitarbeiter und Mitarbeiterinnen im Mindset mitzunehmen": Barbara Czak-Pobeheim, Geschäftsführender Vorstand der Volksbank Akademie, im Gespräch

    Full text link
    Die New-Skills-Gespräche des AMS werden im Auftrag der Abt. Arbeitsmarktforschung und Berufsinformation des AMS Österreich vom Österreichischen Institut für Berufsbildungsforschung (öibf; www.oeibf.at) gemeinsam mit dem Institut für Bildungsforschung der Wirtschaft (ibw; www.ibw.at) umgesetzt. ExpertInnen aus Wirtschaft, Bildungswesen, Politik und aus den Interessenvertretungen wie auch ExpertInnen aus der Grundlagen- bzw. der angewandten Forschung und Entwicklung geben im Zuge der New-Skills-Gespräche lebendige Einblicke in die vielen Facetten einer sich rasch ändernden und mit Schlagworten wie Industrie 4.0 oder Digitalisierung umrissenen Bildungs- und Arbeitswelt. Initiiert wurden die mit dem Jahr 2017 beginnenden New-Skills-Gespräche vom AMS Standing Committee on New Skills, einer aus ExpertInnen des AMS und der Sozialpartner zusammengesetzten Arbeitsgruppe, die es sich zum Ziel gesetzt hat, die breite Öffentlichkeit wie auch die verschiedenen Fachöffentlichkeiten mit einschlägigen aus der Forschung gewonnenen Informationen und ebenso sehr mit konkreten Empfehlungen für die berufliche Aus- und Weiterbildung - sei diese nun im Rahmen von arbeitsmarktpolitischen Qualifizierungsmaßnahmen oder in den verschiedensten Branchenkontexten der Privatwirtschaft organisiert, im berufsbildenden wie im allgemeinbildenden Schulwesen, in der Bildungs- und Berufsberatung u.v.m. verankert - zu unterstützen

    Biogas properties and enzymatic analysis during anaerobic fermentation of Phragmites australis straw and cow dung: influence of nickel chloride supplement

    No full text
    This work was funded by the National Special Water Programs (Nos. 2009ZX07210-009, 2015ZX07203-011, 2015ZX07204-007), Ecological Safety Survey and Assessment of Nansi Lake (2012–2015), Ecological Riverway Artificial Strengthen Key Technology Research and Demonstration Project of Shandong Province (2012–2014, SDHBPJ-ZB-08), the China Scholarship Council (No. 201406730018)
    corecore