129 research outputs found

    Bayesian spike inference from calcium imaging data

    Full text link
    We present efficient Bayesian methods for extracting neuronal spiking information from calcium imaging data. The goal of our methods is to sample from the posterior distribution of spike trains and model parameters (baseline concentration, spike amplitude etc) given noisy calcium imaging data. We present discrete time algorithms where we sample the existence of a spike at each time bin using Gibbs methods, as well as continuous time algorithms where we sample over the number of spikes and their locations at an arbitrary resolution using Metropolis-Hastings methods for point processes. We provide Rao-Blackwellized extensions that (i) marginalize over several model parameters and (ii) provide smooth estimates of the marginal spike posterior distribution in continuous time. Our methods serve as complements to standard point estimates and allow for quantification of uncertainty in estimating the underlying spike train and model parameters

    Consistent Recovery of Sensory Stimuli Encoded with MIMO Neural Circuits

    Get PDF
    We consider the problem of reconstructing finite energy stimuli encoded with a population of spiking leaky integrate-and-fire neurons. The reconstructed signal satisfies a consistency condition: when passed through the same neuron, it triggers the same spike train as the original stimulus. The recovered stimulus has to also minimize a quadratic smoothness optimality criterion. We formulate the reconstruction as a spline interpolation problem for scalar as well as vector valued stimuli and show that the recovery has a unique solution. We provide explicit reconstruction algorithms for stimuli encoded with single as well as a population of integrate-and-fire neurons. We demonstrate how our reconstruction algorithms can be applied to stimuli encoded with ON-OFF neural circuits with feedback. Finally, we extend the formalism to multi-input multi-output neural circuits and demonstrate that vector-valued finite energy signals can be efficiently encoded by a neural population provided that its size is beyond a threshold value. Examples are given that demonstrate the potential applications of our methodology to systems neuroscience and neuromorphic engineering

    Phases of two-dimensional spinless lattice fermions with first-quantized deep neural-network quantum states

    Full text link
    First-quantized deep neural network techniques are developed for analyzing strongly coupled fermionic systems on the lattice. Using a Slater-Jastrow inspired ansatz which exploits deep residual networks with convolutional residual blocks, we approximately determine the ground state of spinless fermions on a square lattice with nearest-neighbor interactions. The flexibility of the neural-network ansatz results in a high level of accuracy when compared to exact diagonalization results on small systems, both for energy and correlation functions. On large systems, we obtain accurate estimates of the boundaries between metallic and charge ordered phases as a function of the interaction strength and the particle density

    Datasets from "Najafi, Farzaneh and Elsayed, Gamaleldin F and Pnevmatikakis, Eftychios and Cunningham, John P and Churchland, Anne K (2018) Inhibitory and excitatory populations in parietal cortex are equally selective for decision outcome in both novices and experts

    Get PDF
    This package contains data from the 4 mice included in "Najafi, Farzaneh and Elsayed, Gamaleldin F and Pnevmatikakis, Eftychios and Cunningham, John P and Churchland, Anne K (2018) Inhibitory and excitatory populations in parietal cortex are equally selective for decision outcome in both novices and experts." Each folder in "FN_dataSharing" belongs to a mouse discussed in the paper. Inside each "mouse" folder, there are folders for each session of experiment (imaging during decision making). Inside each "session" folder, two .mat files exist: 1) "post_*" file includes variables such as the activity of each neuron aligned on the choice ("firstSideTryAl"), trial outcomes ("outcomes"), stimulus rates ("stimrate"), animal's response side ("allResp_HR_LR"), etc. 2) "more_*" file includes variables such as which neurons are inhibitory ("inhibitRois_pix"), and what neurons have poor quality, hence excluded from analyses ("badROIs01"), etc

    CaImAn an open source tool for scalable calcium imaging data analysis

    Get PDF
    Advances in fluorescence microscopy enable monitoring larger brain areas in-vivo with finer time resolution. The resulting data rates require reproducible analysis pipelines that are reliable, fully automated, and scalable to datasets generated over the course of months. We present CaImAn, an open-source library for calcium imaging data analysis. CaImAn provides automatic and scalable methods to address problems common to pre-processing, including motion correction, neural activity identification, and registration across different sessions of data collection. It does this while requiring minimal user intervention, with good scalability on computers ranging from laptops to high-performance computing clusters. CaImAn is suitable for two-photon and one-photon imaging, and also enables real-time analysis on streaming data. To benchmark the performance of CaImAn we collected and combined a corpus of manual annotations from multiple labelers on nine mouse two-photon datasets. We demonstrate that CaImAn achieves near-human performance in detecting locations of active neurons

    Structural basis for delta cell paracrine regulation in pancreatic islets

    Get PDF
    International audienceLittle is known about the role of islet delta cells in regulating blood glucose homeostasis in vivo. Delta cells are important paracrine regulators of beta cell and alpha cell secretory activity, however the structural basis underlying this regulation has yet to be determined. Most delta cells are elongated and have a well-defined cell soma and a filopodia-like structure. Using in vivo optogenetics and high-speed Ca2+ imaging, we show that these filopodia are dynamic structures that contain a secretory machinery, enabling the delta cell to reach a large number of beta cells within the islet. This provides for efficient regulation of beta cell activity and is modulated by endogenous IGF-1/VEGF-A signaling. In pre-diabetes, delta cells undergo morphological changes that may be a compensation to maintain paracrine regulation of the beta cell. Our data provides an integrated picture of how delta cells can modulate beta cell activity under physiological conditions
    corecore