559 research outputs found

    Design research in mathematics education : the case of an ict-rich learning arrangement for the concept of function

    Get PDF
    The concept of function is a central but difficult topic in secondary school mathematics curricula, which encompasses a transition from an operational to a structural view. The question in this paper is how to design and evaluate a technology-rich learning arrangement that may foster this transition. With domain-specific pedagogical knowledge on the learning of function as a starting point, and the notions of emergent modeling and instrumentation as design heuristics, such a learning arrangement was designed for grade 8 students and field tested. The results suggest that these design heuristics provide fruitful guidelines for the design of both a hypothetical learning trajectory and concrete tasks, and can be generalized to other design processes

    Neuromuscular synaptic function in mice lacking major subsets of gangliosides

    Get PDF
    Gangliosides are a family of sialylated glycosphingolipids enriched in the outer leaflet of neuronal membranes, in particular at synapses. Therefore, they have been hypothesized to play a functional role in synaptic transmission. We have measured in detail the electrophysiological parameters of synaptic transmission at the neuromuscular junction (NMJ) ex vivo of a GD3-synthase knockout mouse, expressing only the O- and a-series gangliosides, as well as of a GM2/GD2-synthase*GD3-synthase double-knockout (dKO) mouse, lacking all gangliosides except GM3. No major synaptic deficits were found in either null-mutant. However, some extra degree of rundown of acetylcholine release at high intensity use was present at the dKO NMJ and a temperature-specific increase in acetylcholine release at 35 °C was observed in GD3-synthase knockout NMJs, compared with wild-type. These results indicate that synaptic transmission at the NMJ is not crucially dependent on the particular presence of most ganglioside family members and remains largely intact in the sole presence of GM3 ganglioside. Rather, presynaptic gangliosides appear to play a modulating role in temperature- and use-dependent fine-tuning of transmitter output

    Recovery of mouse neuromuscular junctions from single and repeated injections of botulinum neurotoxin A

    Get PDF
    Botulinum neurotoxin type A (BoNT/A) paralyses muscles by blocking acetylcholine (ACh) release from motor nerve terminals. Although highly toxic, it is used clinically to weaken muscles whose contraction is undesirable, as in dystonias. The effects of an injection of BoNT/A wear off after 3–4 months so repeated injections are often used. Recovery of neuromuscular transmission is accompanied by the formation of motor axon sprouts, some of which form new synaptic contacts. However, the functional importance of these new contacts is unknown. Using intracellular and focal extracellular recording we show that in the mouse epitrochleoanconeus (ETA), quantal release from the region of the original neuromuscular junction (NMJ) can be detected as soon as from new synaptic contacts, and generally accounts for > 80% of total release. During recovery the synaptic delay and the rise and decay times of endplate potentials (EPPs) become prolonged approximately 3-fold, but return to normal after 2–3 months. When studied after 3–4 months, the response to repetitive stimulation at frequencies up to 100 Hz is normal. When two or three injections of BoNT/A are given at intervals of 3–4 months, quantal release returns to normal values more slowly than after a single injection (11 and 15 weeks to reach 50% of control values versus 6 weeks after a single injection). In addition, branching of the intramuscular muscular motor axons, the distribution of the NMJs and the structure of many individual NMJs remain abnormal. These findings highlight the plasticity of the mammalian NMJ but also suggest important limits to it

    Distortions of Subjective Time Perception Within and Across Senses

    Get PDF
    Background: The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood. Methodology/Findings: We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations. Conclusions/Significance: These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions
    corecore