
 

Design research in mathematics education : the case of an ict-
rich learning arrangement for the concept of function
Citation for published version (APA):
Doorman, L. M., Drijvers, P. H. M., Gravemeijer, K. P. E., Boon, P. B. J., & Reed, H. (2013). Design research in
mathematics education : the case of an ict-rich learning arrangement for the concept of function. In T. Plomp, &
N. Nieveen (Eds.), Educational design research - Part B. Illustrative cases (pp. 425-446). SLO : Netherlands
institute for curriculum development.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/fff609a0-2295-4aba-b2b2-0d91f1949cc7


SLO • Netherlands institute for curriculum development

Educational design research – Part B: Illustrative cases

Doorman, M., Drijvers, P., Gravemeijer, K., Boon, P., & Reed, H. (2013). Design research in mathematics education: The 
case of an ict-rich learning arrangement for the concept of function. In T. Plomp, & N. Nieveen (Eds.), Educational design 
research – Part B: Illustrative cases (pp. 425-446). Enschede, the Netherlands: SLO.

SLO • Netherlands institute for curriculum development

Chapter

 

Chapter 21

Michiel Doorman, Paul Drijvers, Koeno Gravemeijer, Peter Boon & Helen Reed 

Design Research in Mathematics 
Education: The Case of an 
ICT-rich Learning Arrangement 
for the Concept of Function



Credits 
 
 

 
 
2013 SLO (Netherlands institute for curriculum development), Enschede 
 
All rights reserved. This publication may be reproduced in whole or in part by photocopying or 
any other means, provided the source is mentioned. 
 

Contents 
 

21. Design research in mathematics education: The case of an ICT-
rich learning arrangement for the concept of function  

 
Abstract  427 
 
1. Introduction 427 
 
2. Theoretical framework 428 
 
3. Design  431 
 
4. Research methods 433 
 
5. Results  434 
 
6. Conclusion and discussion 439 
 
Acknowledgements 441 
 
Key sources 441 
 
References 441 
 



 

 427 

21. Design research in mathematics 
education: The case of an ICT-rich 
learning arrangement for the 
concept of function1 
 
Michiel Doorman, Paul Drijvers, Koeno Gravemeijer, Peter Boon, & Helen Reed 
 
 
 
Abstract 
The concept of function is a central but difficult topic in secondary school mathematics curricula, 
which encompasses a transition from an operational to a structural view. The question in this 
paper is how to design and evaluate a technology-rich learning arrangement that may foster this 
transition. With domain-specific pedagogical knowledge on the learning of function as a starting 
point, and the notions of emergent modeling and instrumentation as design heuristics, such a 
learning arrangement was designed for grade 8 students and field tested. The results suggest 
that these design heuristics provide fruitful guidelines for the design of both a hypothetical 
learning trajectory and concrete tasks, and can be generalized to other design processes. 
 
1. Introduction 
The function concept is a central but difficult topic in secondary school mathematics curricula 
(Akkus, Hand, & Seymour, 2008; Ponce, 2007). Functions have different facets, and to make 
students perceive these as facets of the same mathematical concept is a pedagogical and 
didactical challenge. In lower secondary grades, functions mainly have an operational 
character, and are calculation ‘engines’ that process input values into output values. In higher 
grades, functions have the character of an object with various properties. The transition from 
functions as calculation operations to functions as objects is fundamental for conceptual 
understanding in mathematics.  
Can computer tools help to foster this transition? Computer tools offer opportunities for 
mediating the learning activities in which students engage (Sfard & McClain, 2002). The 
availability of sophisticated computer tools for mathematics education, however, also raises 
questions. Representations (e.g., formulas and graphs) and techniques (e.g., rewriting 
equations) in such computer environments may signify mathematical concepts that are still to be 
constructed by the students. As experts, we see the mathematics in the tool use, but does the 
learner see this too? This inherent circularity is known as the learning paradox (Bereiter, 1985; 
Gravemeijer, Lehrer, Van Oers, & Verschaffel, 2002; Van den Heuvel-Panhuizen, 2003).  
To design a learning arrangement that avoids the learning paradox in using ICT-tools and 
fosters the learning of the concept of function - and the transition from an operational to a 
structural view in particular - is the central issue in this chapter. In a design research study we 

 
1 This contribution is based on the following publication with permission of the editor: Doorman, M., Drijvers, 
P., Gravemeijer, K., Boon, P., & Reed, H. (2012). Tool use and the development of the function concept: 
from repeated calculations to functional thinking. International Journal of Science and Mathematics 
Education, 10(6), 1243-1267. 
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investigate the question of how a learning arrangement with computer tools can foster the 
transition from an operational to a structural understanding of functions. 
 
2. Theoretical framework 
The theoretical framework that guides the design in this study includes (1) domain-specific 
knowledge on the concept of mathematical function; (2) the notion of emergent modeling; (3) 
theories on tool use and its instrumentation. 
 
The concept of mathematical function 
The teaching and learning of the concept of mathematical function is a widely researched topic 
(e.g., see; Carlson, Jacobs, Coe, Larsen, & Hsu, 2002; Ainley, Bills, & Wilson, 2005; Oehrtman, 
Carlson, & Thompson, 2008). A key issue in these studies is what Sfard calls the two sided 
nature of functions (Sfard, 1991, 1992). Her theory on the dual nature of mathematical 
conceptions identifies operational and structural concepts, the first concerning mathematical 
processes and the latter mathematical objects. In Sfard’s view, the operational and structural 
conceptions are complementary. Historically, the operational aspect preceded the structural 
aspect, and the same might hold for individual learning processes, because the structural 
approach is more abstract than the operational. Dichotomies related to Sfard’s operational and 
structural aspects have been brought afore by other researchers such as Dubinsky (1991) and 
Tall and Thomas (1991). 
Based on an analysis of the available literature on this issue of operational conceptions 
preceding structural conceptions, the following sequence of three interrelated aspects of the 
function concept are distinguished: 
1. The function as an input-output assignment 

The function as an input-output assignment that guides the stepwise calculation of an 
output value for a given input value. For example, we can think of a function that converts 
an amount of dollars into an amount of euros, or a temperature in degrees Fahrenheit into 
degrees Celsius. Often, this view on function is seen as the starting point for students. An 
appropriate symbolic representation for this function view is an input-calculation-output 
chain. Figure 1 shows such a chain for calculation temperature in degrees Celsius from 
temperature in degrees Fahrenheit. 

 

 
Figure 1: Input-output chain for temperature conversion  

 
2. The function as a dynamic process of co-variation 

The second aspect of the function concept concerns the notion that an independent 
variable, while running through its domain, causes the dependent variable to move through 
a set of possible outcome values. The dependent variable co-varies with the independent. 
Helpful representations for studying co-variation are tables and graphs, which can be 
scrolled through or traced. Figure 2 shows such a table for the temperature conversion 
example. 
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Figure 2: Table for temperature conversion  

 
3. The function as a mathematical object 

A function is a mathematical object which can be represented in different ways, such as 
arrow chains, tables, graphs, formulas, phrases, each of which providing a different view on 
the same object. The more structural view on functions includes families of functions, 
function comparison, and later on function differentiation or integration. For the object view 
on function, it is important to be able to see the connections between the different function 
representations. Figure 3 combines different representations for the temperature 
conversion example.  

 

 
Figure 3: The different representations of the temperature conversion function 

 
These three aspects of function reflect the operational- structural dimension as identified by 
Sfard (1991): the function as an input - output assignment reflects an operational conception 
and the function as a mathematical object involves a structural view, whereas the function as a 
dynamic co-variation process reflects an intermediate conception. 
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In line with this conceptual analysis, which is further elaborated in Doorman, Drijvers, 
Gravemeijer, Reed, and Boon (2012, see also Gravemeijer, Doorman & Drijvers, 2010), we 
want to design a learning arrangement for the topic of function that fosters the transition from an 
input-output conception to a more versatile view including a structural conception. This is the 
first design criterion. In the envisioned learning arrangement we implement computer tools with 
representations such as arrows, tables, formulas and graphs that initially may have hardly any 
meaning for students. The challenge for us - as designers - is to find ways in which these 
representations become useful models for the students. The notion of emergent modeling offers 
an orientation for addressing this challenge. 
 
Emergent modeling 
Emergent modeling is a design heuristic which originated in the framework of the theory of 
realistic mathematics education (RME) (Gravemeijer, 1999, 2007). RME builds on Freudenthal’s 
(1991) image of mathematics as ‘a human activity’: while engaging in mathematics as an 
activity, students should be supported in re-creating or reinventing mathematics. The emergent 
modeling design heuristic is a means for organizing such a reinvention process. The starting 
point is an activity of modeling problems that are experientially real to the students. Models 
initially are context-specific and refer to realistic or paradigmatic situations. Then, while the 
students gather more experience with similar problems, attention shifts towards the 
mathematical relations involved. This enables students to use the model in a different manner: it 
derives its meaning from mathematical relations and becomes a base for more formal 
mathematical reasoning: a model of informal mathematical activity develops into a model for 
more formal mathematical reasoning (e.g., Gravemeijer, 1999; Cobb, 2002; Doorman & 
Gravemeijer, 2009). The learning paradox described in the introduction can be circumvented by 
designing a chain of activities that allow for a process of emergent modeling that fosters a 
thinking process in which symbolizations and meaning co-evolve (Cobb, 2002; Meira, 1995). 
This approach is consistent with conceptual change literature, which argues that students must 
first explore a domain and recognize limitations or a need for more sophisticated tools, before 
they are ready to learn complex concepts (Lehrer & Schauble, 2002). 
In this study, the notion of emergent modeling is an important design heuristic. It stresses the 
importance of starting with problems that offer opportunities to develop situation-specific 
reasoning and tentative representations for organizing repeated calculations and that have the 
potential to develop into more sophisticated - mathematical - tools and concepts (Gravemeijer, 
2007). Taking this process of emerging models seriously asks for a design in which models for 
emerge in a natural way from models of, that are rooted in suitable contexts. This is a second 
design challenge for the learning arrangement. 
 
Tools and instrumentation 
Emergent modeling as a design heuristic does not particularly focus on the use of computer 
tools and the relationship between computer techniques, paper-and-pencil techniques, and 
conceptual understanding. Drawing upon Vygotsky’s view on the dialectic relation between tool 
use and cultural practices, we consider it important to understand and carefully plan the role of 
tools in a learning process (Vygotsky, 1986; Wertsch, 1998). As Hoyles and Noss (2003) point 
out, tool characteristics do matter in the sense that their visualizations and the available 
techniques affect student learning.  
Instrumentation theory was developed to address the problems that may arise when one starts 
to use a ready-made computer tool and explains the importance of aligning techniques that 
emerge in contextual problems with the techniques available in the computer tool. The theory 
focuses on the mediating role of tools by stressing the co-emergence of tool techniques and 
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meaning in a process of instrumental genesis (Artigue, 2002; Trouche, 2004; Drijvers & 
Trouche, 2008). Instrumental genesis comprises the development of cognitive schemes 
containing conceptual understanding and techniques for using a tool for a specific type of task. 
The resulting instrument integrates the tool and mental schemes. A bilateral relationship 
between the tool and the user exists: while the student’s knowledge guides the way the tool is 
used and in a sense shapes the tool--the affordances and constraints of the tool influence the 
student’s problem-solving strategies and the corresponding emergent conceptions.  
In the case of functions, computer tools offer opportunities to dynamically and flexibly deal with 
different representations such as tables, graphs, and formulas. This may help students to 
overcome the difficulty of construing and integrating the operational and structural aspects of 
the function concept and its different representations. Computer tools can support students in 
exploring dependency relationships and investigating the dynamics of co-variation. The third 
design challenge, therefore, is to shape these opportunities, while ensuring that the techniques 
in the computer tool match with the targeted conceptual development. 
 
3. Design 
The study aims at designing and evaluating an ICT-rich learning arrangement for grade 8 
students (age group 13-14 year) in the Netherlands, 
1. which fosters the transition from an input-output conception to a structural conception 
2. in which ‘models for’ emerge in a natural way from ‘models of’, that are rooted in suitable 

starting points 
3. and which benefits from the opportunities ICT offers, while ensuring that the techniques in 

the computer tool match with the targeted conceptual development. 
As a first design step, a hypothetical learning trajectory (Simon, 1995) was designed based on 
the theoretical framework and the literature review. In this trajectory description, problem 
situations, models, ICT techniques and targeted conceptual development were summarized and 
outlined.  
Next, the design research was carried out in a cyclic process of three design cycles, one pilot 
and two full cycles, each lasting for about one year. The learning arrangement includes (a) a 
computer tool called AlgebraArrows, (b) a student textbook with both paper and pencil and 
computer tasks, (c) a teacher guide describing the various activities and their possible 
orchestrations, and (d) a computer- and written test 2.  
The computer tool is an applet called AlgebraArrows, which allows for the construction and use 
of chains of operations (so-called arrow chains) and provides options for creating tables, graphs 
and formulae and for scrolling and tracing. The applet is embedded in an electronic learning 
environment in which tasks are provided and through which the teacher can monitor students’ 
responses (Boon, 2009). The AlgebraArrows window is embedded in the learning environment 
(see Figure 4). Figures 1, 2 and 3 were also made with this applet. 
 
AlgebraArrows is meant to support the transition from operational understanding to structural 
understanding the concept of function in the following manner. First, students construct input-
output chains of operations to carry out calculations. The chains can be applied to single 
numerical values as well as to variables. Gradually, the student activities focus on the 
investigation of dynamic input-output dependencies. The computer tool’s slider bar and table 

 
2 The trajectory description and the learning arrangement are available through 
http://www.fisme.science.uu.nl/tooluse/en/ . The digital part of it can be found at 
http://www.fisme.uu.nl/dwo/demo/en/   

http://www.fisme.science.uu.nl/tooluse/en/
http://www.fisme.uu.nl/dwo/demo/en/
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scrolling options, in conjunction with the tasks, invite the students’ development of a dynamic 
notion of a variable (see Figure 4). Finally, the students investigate families of functions, with 
their properties and representations, to develop a structural view of function. For instance, the 
table representation is initially understood as a tool for organizing corresponding input-output 
values in a contextual problem on mobile phone offers. Next, the applet’s table option can be 
used as a tool for scrolling and zooming in on or out of these values, e.g., to analyze growth 
behavior or to find break-even points. This imagery of table and actions initially signifies 
repeated calculations and emerges into a model for a structural understanding of dependency 
relationships. In practice, these design considerations led to changes in the applet, such as the 
addition of zooming tools in the table option, similar to the zooming tools in graphs.  
The tool techniques are meant to relate to paper-and-pencil techniques, and as such 
instrumental genesis should be natural and should contribute to the targeted cognitive 
development. 
 

 
Figure 4: The computer tool AlgebraArrows embedded in the learning environment 
 
The student textbook describes the activities for eight lessons. It starts with three preliminary 
paper-and-pencil group activities to create an exploratory orientation on the topic, to create the 
need for organizing series of calculations and to introduce the computer tool. In addition, these 
activities are designed to avoid discrepancies between tool techniques and conventional paper-
and-pencil techniques and to anticipate instrumental genesis through the use of representations 
and techniques that will be used in the computer tool. The three successive activities are: 
• Calculating the area of a flexible quadrilateral, which students explore using a paper model, 

and which then leads to the introduction of a variable (the height of a parallelogram) and a 
calculation procedure or a formula for the area. 

• Comparing two cell phone offers, with a focus on break-even points which creates the need 
for a function-concept (Ainley, Bills, & Wilson, 2005; Küchemann, 1981).  
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• Calculating the braking distance of a scooter for various speeds. It includes a table-
representation and is intended to create the need for graphing a trend for doing predictions.  

During a classroom discussion of students’ solutions orchestrated by the teacher (see below), 
an arrow chain is supposed to emerge as a useful way to investigate input-output relationships. 
The arrangement continues with two computer lessons. During the computer activities, the 
focus shifts from solving specific situations towards the investigation of dependency 
relationships by means of break-even problems that ask for the generation and comparison of 
tables of input- and output values, and moving around in a space of possible values. According 
to the emergent modeling heuristic, a shift is expected to take place from sub-models that 
signify repeated input-output calculations to models signifying dependency-relationships, co-
variation and function object properties. The arrangement continues with a reflective lesson in 
which whole-class discussions and demonstrations align computer techniques with paper-and-
pencil techniques, a computer lesson with applications, and a closing lesson for summarizing 
results and creating consensus on representations and functional reasoning. 
The teacher guide describes the different activities and their possible orchestrations (Drijvers, 
Doorman, Boon, Reed, & Gravemeijer, 2010). It suggests different classroom arrangements, 
such as small group work, poster presentations, computer activities in pairs, and whole class 
discussions on the results, supported by projections of computer work (Stein, Engle, Smith, & 
Hughes, 2008). This variety of classroom arrangements is expected to foster social interaction, 
to promote the articulation of tool use and to enhance reflection and generalization. 
The final part of the learning arrangement consists of a computer test and a written test. This 
mixed media assessment reflects the arrangement as a whole. The written test captures 
transfer of learning from computer tool to conventional methods and contains questions about 
break-even points, and computer tasks where students could use the applet AlgebraArrows3. 
Test items in the two tests are comparable in length and difficulty and have similar scoring 
instructions. 
 
4. Research methods 
To evaluate the design and to understand why the particular instructional setting potentially 
supports learning, design research was carried out (Gravemeijer & Cobb, 2006, 2013). The 
main hypothesis to be investigated is that the learning environment indeed fosters a transition 
from an operational view to a structural view, as reflected in the students’ reasoning and in their 
way of using the computer tool. We briefly now describe the teaching experiments and data 
collection, and the data analysis. 
 
Teaching experiments and data collection 
After a first small-scale pilot study in one class, two successive teaching experiments were 
conducted in grade 8, with mid and high-achieving 13-14 year old students, for investigating 
their learning processes in relation to the learning arrangement. Each round of experiments took 
eight 50-minute lessons. The first was conducted with three classes from three different 
schools. The second was conducted on a larger scale. In this paper, we focus on screencast 
video data from pairs of students in the first teaching experiment. These students were selected 
by their teachers based upon criteria we provided: an average level of mathematical 
performance, a communicative attitude, i.e., willing to explain their reasoning and solution 
strategies, and audible articulation. The qualitative findings are triangulated with quantitative 

 
3 The full computer test and written test can be found at http://www.fisme.uu.nl/tooluse/en/ 
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posttest data from 155 students from five classes from two different schools in the second 
experiment, for which the most complete data were available. 
In both teaching experiments, whole class teaching sessions, group work and work in pairs 
were videotaped in two of the participating classes and, in each of these classes, screencast-
audio videos of two pairs of students working with the computer tool were collected. In addition, 
students’ answers and results to the written and the computer test administered at the end of 
the experiment were collected.  
Between the teaching experiments, the learning arrangement was improved. The overall outline 
of the three different aspects of the function concept was not changed but fine-tuning the model-
of to model-for development and the relationship between tool techniques, paper-and-pencil 
work and mathematical thinking was needed. In order to better investigate the development of 
the function concept, we placed a stronger emphasis on break-even points as a motivation for 
investigating the dynamics of relationships. In addition, to establish to what extent the students’ 
final performance depended on the use of the available computer tool and to assess the 
transfer of learning, both a written test and a computer test were added to the end of the 
learning arrangement. 
 
Analysis 
The data analyses started with organization, annotation and description of the data with 
software for qualitative data analysis (ATLAS.ti; see van Nes & Doorman, 2010). Initially, the 
tasks in the learning arrangement served as the unit of analysis. Factual codes (task number, 
student names, et cetera) were used to organize and document the data. Events in class videos 
and screencast videos that were notable from the perspective of the research question were 
transcribed and discussed in the research team. 
In analyzing the first teaching experiment, we constructed a storyline as a reconstruction of the 
students’ learning process. The qualitative data sources were discussed with two external 
experts to identify illuminating examples of the resultant learning process. This discussion 
resulted in recognizing a shift in the students’ reasoning with functions. Next, illuminating and 
representative examples for important steps in the shift were identified. A code book was set up. 
Next, we distinguished solution strategies used on two similar computer tasks on break-even 
points that were designed for studying the development of students’ reasoning with the 
computer tool. One task was situated at the beginning of the computer lessons and the other at 
the end. The strategies led to the construction of codes with respect to the use of 
representations in the computer tool. These codes reflected the different aspects of the function 
concepts, the types of tool use, and the position in the hypothetical learning trajectory. In a later 
phase, these codes were also used for the quantitative analyses of students’ answers to the 
paper-and-pencil activity concerning the arrow chain (the booklets of 5 students were missing), 
the screenshots of the answers to the two computer tasks, and the screenshots of students’ 
final work on the two computer tasks. A second researcher coded 55 out of 306 items (18%). 
Good inter-rater-reliability was achieved (Cohen’s Kappa = 0.79). A paired t-test was used to 
compare the results on the written test and the computer test. 
 
5. Results 
The results of the study are presented in the form of a storyline of students’ learning process in 
relation with the learning environment, as reflected in their reasoning and in their way of using 
the computer tool. This storyline offers opportunities to trace the development of our 
interpretations and understanding of these learning processes. This approach is linked to 
Smaling’s (1987) view on `trackability’ and to Freudenthal’s notion of ‘justification’ (Freudenthal, 
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1991). The storyline is illustrated with examples of student work and is also supported by the 
quantitative findings.  
 
The initial cell phone offer task: organizing calculations 
The results of the initial open-ended group activities of the first teaching experiment show a 
variety of solution strategies. In Figure 5 (top) the cell phone offer task is shown. The students’ 
posters below are illustrative for their attempts to organize the situations mathematically, i.e., to 
organize repeated calculations, construct variables and use various representations. In the 
poster on the left, students organize their repeated calculations by systematically writing them in 
a list, which resembles an input-output relationship. This helped them to see the pattern in the 
calculation, and to apply this pattern to a new input value. In the right poster, students use 
formulae to describe their repeated calculations. Although not in conventional form, the 
formulae show the identification of the two variables of the dependency relationship (m for 
minutes and b for costs). The repeated calculations reflect how the operational aspects precede 
the structural aspects of functions (Sfard, 1991). From an emergent modelling perspective, the 
context apparently provides a suitable starting point. 
 

 
Figure 5: Cell phone offer task and students' poster 
 
Introducing arrow chains: visualize functions 
In a whole-class discussion, the posters helped the teacher to evoke the need for determining 
variables, dependency relationships and more efficient notations and tools for finding break-
even points. The teacher exploited the students’ strategies by linking their initial ideas to the 
intended tool use. A new mathematical goal emerged: repeated calculations are time-
consuming, what is the general pattern in the calculation procedures? How can this pattern be 
described to calculate results ‘automatically’? How could a ‘calculator’ help in comparing cell 
phone offers? A calculation recipe comprising a fixed chain of operations emerged. This arrow 
chain is the central representation of the computer tool. In the last activity before the computer 
lessons, the students were asked to draw calculation chains for the two cell phone offers.  
Figure 6 shows an illustrative answer to this task.  
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Figure 6: Written calculation chains for cell phone offers (called ‘Soms’ and ‘Vaak’). 
 
The arrow chain as a model of repeated calculations appeared to be grounded in students’ 
previous activities and could begin to function as a mathematical model for (in terms of the 
theory of emergent modeling) reasoning about dependency relationships. This assumption is 
backed up with an analysis of the results of student booklets from the second experiment. The 
analysis shows that 124 out of 150 students (83%) drew a similar chain while another 8 (5%) 
drew this chain, but used it only for one specific calculation and did not label input and output 
boxes. From an instrumental genesis perspective, the tool techniques were prepared for by 
paper-and-pencil work. 
 
Using the computer tool to create arrow chains 
The third lesson - the first computer lesson - started with some introductory activities and then 
continued with the cell phone problem (Figures 5 and 6). The task was to determine, with the 
computer tool at hand, when it is advisable to change from one offer to the other. Two students, 
Lily and Rosy, worked together on this task. After reading the problem on the computer screen, 
they started to construct arrow chains with the computer tool.  
 
[Rosy drags an input box into the drawing area. The box is connected to the operation - 80 and 
that one is connected to x 0.15.] 
Lily:  And that added to the fixed costs.  
[R agrees and connects the chain to + 22.5. Finally, they connect the chain to an output box.] 
L:  Well, when you phone for 100 minutes….  
[enters 100 as input in both chains. TomSeldom (Soms) is cheaper than the other offer.]. 
R:  …. Well, maybe 50.  
[L enters 50 as input for both chains. They look at the results and are still not satisfied. They try 
some more input values. Finally, they enter 200 in the input box of both chains. For the first time 
TomOften (Vaak) is cheaper than the other offer. They are satisfied with this result and proceed 
to the next task.] 
 
The vignette illustrates how the arrow chain has become a means to organize the situation and 
the calculation procedure. Lily and Rosy built the chain from the input box, adding operations 
and finally connecting an output box. This construction signifies their previous calculations. 
They focused on specific cases by entering respectively 100, 50 … and finally 200 for 
comparing the differences between the two offers. The arrow chain is used for repeated 
calculations. The tool supports the construction of these chains, and the chain becomes a 
means for analyzing and discussing relationships and successive operations, as a sequel to 
merely solving repeated calculations. The tool technique clearly is linked to the students’ paper-
and-pencil experience and supports their thinking. 
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Whole-class discussion capitalizing on hands-on experience 
The start of the second computer lesson (the fourth in the learning arrangement), consisted of a 
teacher-guided classroom discussion of students’ computer work with the computer tool 
connected to a data projector. Topics of discussion were the possibility to label input and output 
boxes and to use tables. These tool techniques were already used by some of the students, and 
now became ‘institutionalized’ through the whole class discussion. The teacher started the 
discussion with an arrow chain for one of the cell phone companies:  
 
Teacher: I heard different ways to find out how much I have to pay, how the amount changes, 
how can you demonstrate that? [Silence] For example, if I call 10 minutes. How can I find out 
how much I pay for 10 minutes? 
Student 1: Put 10 in the input box. 
Teacher enters 10 into the input box. This gives an odd result (first 30 free minutes are 
subtracted). The result is discussed and the teacher varies the input by entering some more 
values. 
Teacher: Suppose I want to know the output from many input values, what more can I use? 
Student 1: The table. 
Teacher clicks the table tool and shows how you can scroll through the input and output values. 
Teacher: Does anyone know another way to show how the output values change for different 
input values? 
Student 2: With a graph… 
 
After this suggestion the teacher opened the graph tool. She demonstrated how to connect an 
arrow chain to the graph window. Together with the students she investigated the options to 
trace a graph and to zoom in and out. In this way, while demonstrating the tool techniques, the 
teacher discussed the dependency relationships and the ways tables and graphs can be used 
to analyze their dynamics. In the previous computer activities, Lily and Rosy did sometimes click 
for a table or graph, but had not used it for scrolling or tracing values.   
This observation shows how the teacher used the computer tool to create whole-class 
consensus on how to use it for investigating dependency relationships. Both the techniques and 
related concepts were part of the discussion. She did not show how to use these features for 
finding break-even points. That was still a task for the students. 
 
A different view on function 
During the third computer lesson (the sixth lesson of the learning arrangement), we observed 
that the strategy of Lily and Rosy for using the computer tool had changed while solving a task 
on two offers by contractors called Pieters and Tweehoog (Figure 7).  

 
Figure 7: Handyman task offers 
 
The task in Figure 7 is quite similar to the cell phone activity (Figure 5). However, the way in 
which these students analyzed the problem situation, phrased the structure of the solution 
procedure and used the representations in the tool changed: AlgebraArrows was now used to 

To get some jobs done in the house we can choose from two contractors:  
Contractor “Pieters” charges 92 start costs and an hourly rate of 30. 
Contractor “Tweehoog” charges 45 start costs and an hourly rate of 32,75. 
You have a job of 9 hours. How much cheaper is Tweehoog than Pieters? 
After how many hours of work is contractor Pieters cheaper than Tweehoog? 
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investigate the dynamics of relationships, rather than for case-by-case calculations. Figure 8 
shows some subsequent phases in these students’ work. 
 

 Figure 8: Different phases in students’ work 
 
First, the students identified the variables by creating labeled input- and output boxes for the 
first arrow chain, with ‘uurloon’ meaning hourly rate and ‘Kosten’ for costs (Figure 8 top). Next, 
they filled in the operations and completed the chain (Figure 8 middle). Then they constructed 
the second chain for the Tweehoog company in similar way. Finally, they added tables, and 
scrolled through them to find the break-even point for 18 hours (Figure 8 bottom part). This 
behavior illustrates a different view on, and use of, the arrow chain compared to the initial 
operational left-to-right construction of a chain for repeated calculations. More specifically, the 
vignette illustrates how the arrow chain had become a tool for analyzing dependency 
relationships. Lily and Rosy organized the dependency relationship by identifying, positioning 
and labeling boxes for input and output variables and filling the gap between them with 
operations. This construction signifies an understanding of the problem as a question about two 
dependency relationships. For investigating the dynamics, they successfully operated the table 
tool to zoom in and out for finding the break-even point. Corresponding to this new view on 
function, the technique of constructing an arrow chain changed, now starting with labeled input 
and output boxes rather than with input and then operations. This suggests a structural view on 
function.  
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Triangulating case study findings with computer output 
The second teaching experiment was used to quantitatively verify the hypothesis on the 
transformation of the view on function during the computer activities. We found that for the initial 
task 130 out of 155 students (84%) used the tool only for calculating successive input-output 
values, while in the task at the end, 89 out of 152 students (58%) used the tool for structuring 
and investigating the dynamics of the relationships.  
Whereas the students’ initial technique with the applet suggested an operational view on 
functions, this more advanced technique reflects a transition towards a gradually developing 
structural view. In other words, the shift in the use of the tool reflects the development from 
viewing calculation recipes as tools for repeated calculations (as processes) towards reasoning 
with structural characteristics of dependency relationships (as objects).  
To investigate whether this transition also encompassed students’ written work during the eight 
lessons, we compared the scores of the computer test and the written final test. A paired t-test 
showed no significant difference (p=0.20) between the final scores on the written test and the 
computer test. The Pearson correlation coefficient of 0.38 between these scores was moderate 
(p=0.001). This suggests that students who improved their reasoning through the described shift 
evoked by the use of the computer tool were able to transfer learning to a more conventional 
paper-and-pencil test.  
 
6. Conclusion and discussion 
 
Conclusion 
In the introduction, we raised the question of how a learning arrangement with computer tools 
can foster the transition from an operational understanding to a structural understanding of 
functions. From the data analysis, we see the following characteristics of the learning 
arrangement as decisive for fostering a transition from a calculation understanding to working 
with correspondence and co-variation: 
• The three initial open-ended problems and the poster activity helped students in coming to 

see input-output structures in problems about dependency relationships and to use 
representations to explore them. 

• By enabling students to design and use arrow chains as a means of support for reasoning 
about calculation procedure that bear meaning in everyday-life phenomena, the computer 
tool supported the students in developing the notion of a chain of operations. 

• By generating the results of a series of calculations for a variety of input values, the 
computer tool strengthened the students’ notion of a function as a calculation procedure 
that transforms input values into output values. 

• By generating output values for series of input values, by generating tables of input and 
output values, and by enabling the students to move up and down the values in these 
tables, the computer tool supported the students in developing a dynamic notion of a 
variable that can move in a space of possible values, and the corresponding idea of co-
variation. 

• By displaying arrow chains, tables and graphs the computer tool offers representations, 
which the students could construe as affordances to start treating functions as objects 
before they had become objects for them. In this way, the learning paradox may be 
circumvented. 

• By discussing students' work with the tool and showing specific features that some of the 
students discovered, the teacher appeared successful in supporting most students in using 
the table representation. 
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We conclude that the learning arrangement with a computer tool helped students to overcome 
the difficulty of integrating operational and structural aspects of the concept function and 
supported explorative activities for investigating the dynamics of co-variation, even though the 
students didn’t reach the full level of “function as a mathematical object” but just began to make 
the transition towards this level of understanding. Further advances in this direction would 
encompass, for example, more different types of functions and operations on functions such as 
composition and multiplication. 
 
Discussion 
Before discussing the design heuristics of this study, we first address its limitations. The 
sequence of eight lessons fostered conceptual development in the domain of functions. 
However, the final test data do not give insight in whether all students made a similar step 
towards a dual conceptualization, with procedural and structural views, of functions. Students’ 
work during the computer lessons revealed that the final screenshots of an activity sometimes 
are only approximate representations of the students’ reasoning. Students can be close to a 
good answer and then delete everything as a result of a sudden doubt. Final screenshots don't 
capture this entire reasoning process. Additional process information is needed for a full 
understanding of students’ conceptual development in relation to their tool techniques, although 
a balance must be found between the extensiveness and the manageability of the data 
collection.  
As a final issue, we mention the generalizability from design-based case studies (Yin, 2003). 
We agree with Plomp and Nieveen (2009) that the results of design research have an analytical 
generalizability and a replication logic: the findings in this case may not be directly 
generalizable, but the design experiment may be treated as a paradigm case (Gravemeijer & 
Cobb, 2006, see also this volume), which offers domain-specific design heuristics that can be 
extrapolated to similar design studies. The extensive description of the interventions in 
Doorman, Drijvers, Gravemeijer, Boon, & Reed (2012) is intended to enable researchers to 
reenact the experiment in other settings as a way to evaluate our findings and to contribute to 
the development of a more comprehensive theory.  
In retrospect, how do we view the three theoretically based design heuristics described in 
section 2? First, we used domain-specific theories on the acquisition of the concept of function, 
and on the transition from an operational to a structural conception in particular. This design 
heuristic was fruitful for outlining the learning arrangement. It had an important impact on setting 
up a hypothetical learning trajectory and on the design of the tasks. This particular design 
heuristic can be generalized into an overarching one, which is that - before engaging in design - 
a deep analysis of the topic is needed to be able to identify its learning obstacles and 
pedagogical challenges and to outline a learning trajectory. 
A second design heuristic was the notion of emergent modeling, and its focus on the shift from 
model-of to model-for. This heuristic not only guided the design of the learning arrangement, but 
the students’ cognitive development, and their ways of using the tool initially as a tool for 
calculations and later as a tool for reasoning with function, reflects this shift. As such, this was a 
suitable design heuristic. 
Third, instrumentation theory focuses on the interrelated development of techniques and 
concepts. As a design heuristic, it fostered a careful integration of computer activities and 
paper-and-pencil activities, which prevented discrepancies between tool techniques and 
conventional methods. The process of instrumental genesis was enhanced by the alternation 
between classroom discussion, small group activities and computer activities.  
Altogether, while outlining the hypothetical learning trajectory and designing the tasks the three 
design heuristics provided important and concrete guidelines. Having a set of such design 
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heuristics is indispensable, but in the meanwhile does not guarantee a successful design: it is 
not just knowledge of appropriate design heuristics, but their application in different domain-
specific situations that forms the heart of the ‘art’ of the designer. 
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