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Predicting binaural speech intelligibility using the signal-to-
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This study proposes a binaural extension to the multi-resolution speech-based envelope power spec-

trum model (mr-sEPSM) [Jørgensen, Ewert, and Dau (2013). J. Acoust. Soc. Am. 134, 436–446]. It

consists of a combination of better-ear (BE) and binaural unmasking processes, implemented as

two monaural realizations of the mr-sEPSM combined with a short-term equalization-cancellation

process, and uses the signal-to-noise ratio in the envelope domain (SNRenv) as the decision metric.

The model requires only two parameters to be fitted per speech material and does not require an

explicit frequency weighting. The model was validated against three data sets from the literature,

which covered the following effects: the number of maskers, the masker types [speech-shaped noise

(SSN), speech-modulated SSN, babble, and reversed speech], the masker(s) azimuths, reverberation

on the target and masker, and the interaural time difference of the target and masker. The Pearson

correlation coefficient between the simulated speech reception thresholds and the data across all

experiments was 0.91. A model version that considered only BE processing performed similarly

(correlation coefficient of 0.86) to the complete model, suggesting that BE processing could be con-

sidered sufficient to predict intelligibility in most realistic conditions.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4954254]

[FJG] Pages: 192–205

I. INTRODUCTION

Cherry (1953) coined the term “cocktail party problem”

to describe the ability of listeners to “recognize what one

person is saying when others are speaking at the same time.”

It is known that this ability is typically improved if the lis-

teners can use both of their ears, relative to either ear alone,

and if the target and maskers are spatially separated. Various

models have been designed to disentangle which part of this

binaural advantage can be attributed to a selection process

between left versus right ear (i.e., a “better-ear” process), a

“purely” binaural process where the signals from both ears

interact, or a combination of both. The models typically

focused on a few aspects affecting speech intelligibility at a

time, such as the spatial separation of the target and the

maskers, the effects of reverberation on the target or on the

maskers, the role of temporal fluctuations in the masker, and

the effects of multiple interferers. None of the models can

account for all of these aspects at once. In the current study,

recent advances in monaural intelligibility predictions are

combined with binaural modeling approaches in an attempt

to provide a model that can account for all of the aforemen-

tioned aspects.

Binaural intelligibility models usually combine a mon-

aural model with some form of binaural processing to cap-

ture binaural cues attributed to head shadows and binaural

interactions (Bronkhorst and Plomp, 1988). When a masker

is placed elsewhere than in front of the listener, the head

casts an acoustical shadow on the side opposite to the source.

If the target is placed towards the ear that is in the shadow,

the target-to-interferer ratio (TIR) is improved for that ear,

yielding a better ear (BE), which helps the listener under-

stand the target. These level cues are denoted as interaural

level differences (ILDs). Correspondingly, different source

azimuths produce different interaural time differences

(ITDs). Binaural interactions rely on the ITD between target

and maskers to facilitate their segregation, denoted as

“binaural unmasking” (BU). The equalization-cancellation

(EC) theory (Durlach, 1963) suggests that binaural unmask-

ing can be explained by the ability of the central auditory

system to “cancel” the interferers, effectively maximizing

the target-to-interferer ratio.

A. Models with independent processing of ILDs and
ITDs

Binaural models that predict intelligibility in spatial

conditions tend to consist of a combination of two compo-

nents that realize the BE and the BU processes. For example,

the model of Lavandier and Culling (2010) first evaluates

the BE contributions by selecting the best long-term target-

to-interferer ratio for each peripheral channel, using station-

ary speech-shaped noise (SSN) convolved with the binaural

impulse responses between the listener and the sources as

the target and masker “probe signals,” and combining them

using the speech intelligibility index (SII) weights (ANSI,

1997). The BU path evaluates the binaural masking level dif-

ference (BMLD) in each channel using an equation based on

the EC concept, which incorporates the ITDs of the target

and masker, as well as the interaural coherence of the masker

(Culling et al., 2005). The BMLD values are also combineda)Electronic mail: tda@elektro.dtu.dk
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using the SII weights, and then summed with the BE to yield

the overall binaural advantage, relative to the colocated con-

dition. Their model could account for conditions with an

anechoic target and a noise masker placed at different distan-

ces and azimuths in three different rooms. However, because

the model considers anechoic targets only, it cannot capture

the effects of reverberation on the target itself because rever-

beration does not strongly affect the envelopes of the con-

volved SSN probe signals. Furthermore, it is limited to

stationary maskers and thus cannot account for intelligibility

changes due to amplitude modulations in the maskers

because the model only considers the long-term properties of

the signals.

This model of Lavandier and Culling (2010) was

expanded to include head shadow and multiple stationary

maskers in anechoic (Jelfs et al., 2011) and reverberant con-

ditions (Lavandier et al., 2012). Those two model versions

used binaural room impulse responses (BRIRs) directly to

calculate the TIRs and BMLD values. Although those

extended model implementations are computationally more

efficient and have more predictive power than the previous

one, they still have the same inherent limitations, i.e., they

cannot account for any release from masking due to modula-

tions in the maskers and cannot describe effects of temporal

smearing of the target at low direct-to-reverberant ratios.

Those are similar to the limitations of the SII, on which those

models are based; the models would predict good intelligi-

bility at infinite SNRs but low direct-to-reverberant ratios,

which is in contrast to the reduced intelligibility observed in

such conditions.

Collin and Lavandier (2013) proposed another extension

of the original work of Lavandier and Culling (2010) to

account for the effects of modulated interferers, whereby the

BE and BU calculations are performed in short-time frames

of 12 ms on the filtered signals, rather than directly on the

BRIRs. The short-time frames are averaged over the duration

of the signals, similar to the processing in the extended

speech intelligibility index (ESII) (Rhebergen and Versfeld,

2005). Collin and Lavandier used an SSN target, rather than

speech, because it was assumed that gaps in the speech

would produce negative TIRs even though they carry infor-

mation that should contribute positively to the intelligibility.

Collin and Lavandier (2013) varied the masker distance as

well as its modulation depth using either stationary SSN, 1-,

2-, or 4-talker modulated SSN. The model was demonstrated

to qualitatively account for the correct trends in the data for

different masker distances and modulation depths, although

measured and simulated effects were small (from less than

1 dB to about 2 dB). However, while the short-time approach

seemed successful when predicting intelligibility in modu-

lated maskers, it would fail to account for the effects of

reverberation on the speech because SSN is used instead of

speech for the target signal.

B. Models combining the SII and the EC concept

In the binaural speech intelligibility model (BSIM)

(Beutelmann et al., 2010), which is a revision and simplifica-

tion of the original implementation (EC/SII; Beutelmann and

Brand, 2006), the BU process is implemented as a

frequency-independent equalization and cancellation

(Durlach, 1963) of the long-term signals received at each

ear. The SII is then used to evaluate the intelligibility based

on the effective TIR in each frequency band. The reference

SII value corresponding to the speech reception threshold

(SRT) is selected only once for all conditions and is defined

as the SII predicting 50% intelligibility for the monaural pre-

sentation of the Oldenburg Sentence Test in noise (Wagener

et al., 1999). The BSIM could predict SRTs of normal-

hearing (NH) listeners in conditions with colocated target

and stationary SSN maskers, as well as with spatially sepa-

rated target and maskers, in anechoic conditions and in three

different rooms (a listening room, a classroom, and a

church). Beutelmann et al. (2010) also extended the BSIM

to account for fluctuating maskers by computing the SII after

EC processing in short time windows with an effective

length of 12 ms. The extension was named short-term BSIM

(stBSIM). The stBSIM could account for the release from

masking due to modulated maskers in anechoic conditions,

but was less accurate when reverberation was introduced;

the mean differences between predicted and observed SRTs

varied between �4.1 and �2.7 dB. Furthermore, similar to

the model of Lavandier and Culling (2010) and its exten-

sions, the stBSIM cannot account for the effects of reverber-

ation on the speech itself because it cannot separate the

useful from the detrimental part of the speech.

Rennies et al. (2011) proposed several modifications of

the long-term BSIM to better account for the deleterious

effect of reverberation: (1) an extension based on the modu-

lation transfer function, (2) a compensation factor based on

the room “definition” (a room acoustical property), and (3) a

separation of the speech signal based on the useful and detri-

mental parts. Extension (2) provided the best fit of the three

models in anechoic and reverberant conditions with station-

ary maskers. Although the proposed modifications increased

the predictive power of the model, they also reduced its gen-

erality because the model now required access to the room

impulse response in addition to the speech and noise signals.

Wan et al. (2010) introduced an application of the EC

model of Durlach (1963), which they later denoted as the

steady-state EC model (SSEC). Their approach is similar to

that of the BSIM (Beutelmann et al., 2010) but differs in a

few important ways: the decision device based on the SII

selects the best SNR from the left ear, the right ear, or from

the cancelled pathway for each frequency channel, rather

than from the cancelled pathway only; the EC process reso-

lution is limited by applying frequency-independent and

time-varying jitters in both amplitude and time to the output

of each peripheral filter, instead of adding uncorrelated noise

to each ear signal; a different SII criterion is selected for

each combination of number of maskers, and type of

maskers, rather than using a single SII criterion. The model

was evaluated for different masker types, 1 to 3 simultaneous

maskers, and different masker azimuth angles. Wan et al.
(2010) showed that the model could predict SRTs correctly

when the maskers were SSN or speech-modulated SSN, but

failed when the maskers were speech or reversed speech.
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Wan et al. (2014) proposed the short-time EC model

(STEC) to extend the SSEC. In contrast to the SSEC, the

equalization parameters of the EC process are calculated in

overlapping 20 ms windows and can vary as a function of

time, which improves cancellation of the dominant masker

across time. The cancelled signal is then resynthesized from

the short-time windows and the SNR is calculated from the

long-term spectrum. This means that only the BU process is

applied in a short-time fashion and not the BE process. The

STEC predictions were more accurate in conditions with

speech-modulated SSN; however, the agreement with the

data was worse than with the SSEC for reversed-speech

maskers. The STEC described the spatial release from mask-

ing occurring with speech maskers slightly better than the

SSEC did, but it still failed to account for the large 9 dB

release from masking observed in Marrone et al. (2008)

when two speech maskers are moved from being colocated

with the target to being placed at 615� azimuth angles. This

may be due to differences in informational masking (IM)

across the conditions. The STEC still has the same inherent

limitation as the SSEC in that the model fitting has to be

done for each combination of masker type and number of

maskers. Further, it has never been tested in reverberant

conditions.

C. Modulation-domain models

In contrast, Van Wijngaarden and Drullman (2008)

extended the speech transmission index (STI) (Houtgast and

Steeneken, 1973; IEC, 2003) to consider binaural hearing.

The STI considers the integrity of the modulations of a refer-

ence signal (or speech) after processing as the decision metric,

assessed by the modulation transfer function (MTF). The

MTF can capture the effects of reverberation on speech

because of the reduction in modulation in the reference signal.

The binaural interaction of the binaural STI is based on inter-

aural cross-correlograms. Van Wijngaarden and Drullman

(2008) showed that the binaural STI extension could account

for consonant-vowel-consonant (CVC) word scores for sta-

tionary maskers presented in multiple rooms (anechoic, a lis-

tening room, a classroom, and a large church). However, this

approach is limited because it cannot be extended to more re-

alistic conditions where the maskers are also modulated, since

modulations are then coming from both the target and

maskers and they can no longer be distinguished.

In order to account for different amounts of target and

masker modulations, Jørgensen and Dau (2011) proposed

the monaural speech-based envelope power spectrum model

(sEPSM), which considers the signal-to-noise envelope

power ratio (SNRenv) at the output of a modulation filterbank

(Ewert and Dau, 2000) as the decision metric. In addition to

conditions with additive maskers, the sEPSM can also

account for the effects of reverberation, as well as noise

reduction via spectral subtraction because it captures the

increase in the masker’s modulation power after processing.

The sEPSM was extended to account for conditions with

fluctuating maskers by using a “multi-resolution” process

(Jørgensen et al., 2013). In the corresponding multi-

resolution model, the mr-sEPSM, the SNRenv is calculated in

windows of different length [akin to the ESII of Rhebergen

and Versfeld (2005)] according to the center frequency of

the modulation filters. The mr-sEPSM was validated using

various fluctuating noises, including cafe noise, two-band

speech modulated noise, the international speech test signal

(Holube et al., 2010), and a reversed talker. In contrast to the

SII and STI metrics, the SNRenv metric can account for both

the effects of reverberation on the target and the masker as

well as for the release from masking due to fluctuations in

the maskers. However, the model has not yet been applied to

spatial conditions using two-ear processing. Therefore, using

the mr-sEPSM framework in a binaural model could yield a

model that can account for all the aforementioned aspects of

binaural speech intelligibility: the spatial separation of the

target and the maskers, the effects of reverberation on the

target and on the maskers, the role of temporal fluctuations

in the masker, and the effects of multiple interferers.

None of the models previously mentioned can account

for the deleterious effects of colocated concurrent speakers

on speech intelligibility. The difference between the meas-

ured intelligibility and intelligibility predicted using energy-

based model is often labeled as “informational masking.”

D. Proposed modeling framework

Here, a model is proposed that combines concepts from

different modeling approaches. Specifically, it integrates a

short-time equalization-cancellation process (Wan et al.,
2014), a temporal modulation filterbank (Dau et al., 1997;

Ewert and Dau, 2000), the SNRenv metric (Jørgensen and

Dau, 2011), and a better-ear process in the envelope power

domain. The model was evaluated using a set of critical ex-

perimental conditions from the literature to tease apart the

contributions of the decision metric, the short-time process-

ing, the better-ear process, and the binaural unmasking for

predicting intelligibility in spatial conditions. Experiment 1

focused on conditions with multiple maskers in anechoic

conditions, experiment 2 considered conditions with only a

single masker, but in a reverberant environment, and experi-

ment 3 investigated a single-masker condition where only

ITD but no ILD information was provided.

II. MODEL DESCRIPTION

A. Overall model structure

Figure 1 shows a sketch of the model proposed in the

present study, which is an extension of the monaural mr-

sEPSM (Jørgensen et al., 2013). The model consists of realiza-

tions of the monaural mr-sEPSM for the left and right ear, and

a “central” pathway where binaural unmasking takes place

using an EC process (Wan et al., 2014). In contrast to the orig-

inal mr-sEPSM, the model employs a binaural processing

stage. Binaural processing is limited by peripheral transduc-

tion, which does not preserve fine-structure information at

high frequencies (Bernstein and Trahiotis, 1996). Peripheral

transduction is therefore modeled using half-wave rectification

and low-pass filtering. A binaural selection stage combines the

outputs of the left, right and central pathways. The subsequent

output is then converted to intelligibility using an ideal
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observer concept. The extension to the mr-sEPSM is presented

below; further details and justifications about the mr-sEPSM

approach can be found in Jørgensen et al. (2013).

B. Monaural processing stage

The inputs of the model are the noisy speech and the

noise alone for each ear. The first stage of each monaural

model consists of 22 gammatone filters covering the fre-

quency range from 63 Hz to 8 kHz with a third-octave spac-

ing. The channels are processed further only if the level of

the noisy speech for that channel is above the diffuse-field

threshold in quiet (ISO, 2005). The envelope of each channel

output is extracted using half-wave rectification and low-

pass filtered using a fifth-order Butterworth filter with a cut-

off frequency of 770 Hz (Breebaart et al., 2001). Jitter in am-

plitude and time is applied to each envelope independently

to limit the efficacy of the EC process; all jitters are zero-

mean Gaussian processes with standard deviations of

rd¼ 105 ls for the time jitter and of r�¼ 0.25 (dimension-

less) for the amplitude jitter (Durlach, 1963). The resulting

envelopes are further processed by a modulation filterbank

consisting of eight second-order Butterworth band-pass fil-

ters. A third-order low-pass filter with a 1 Hz cut-off fre-

quency is applied in parallel, which completes the filterbank.

Conceptually, this filter can be considered as the lowest fre-

quency band in the filterbank. Only modulation filters with

center frequencies below one-fourth of their respective

peripheral-filter center frequency are used (Verhey et al.,
1999).

The output of each modulation filter, n, is segmented in

non-overlapping rectangular windows of durations inversely

proportional to the center-frequency of the respective modu-

lation filter, e.g., the windows at the output of the 8 Hz mod-

ulation filter are 125 ms long. The power, Penv,i(p, n), of

each segment, i, is defined as the variance of the segment,

Penv;i p; nð Þ ¼
1

�E p; tð Þ
� �2

=2
ei p; n; tð Þ � �ei p; nð Þ
� �2 ; (1)

where p is the corresponding peripheral filter, E(p, t) is the

envelope at the output of the peripheral filter, ei(p, n, t) is the

envelope at the output of the modulation filter for the seg-

ment i, t is time, and the overbar indicates the average over

time. �ei is the average over a time segment, i, of varying du-

ration according to the center frequency of the modulation

filter. �E is averaged over the whole sentence duration. The

lower limit of the envelope power is set to �30 dB relative

to 100% amplitude modulation.

The SNRenv,i for each segment is computed from the en-

velope power of the noisy speech and the noise alone,

SNRenv;i p; nð Þ ¼
Penv;SþN;i p; nð Þ � Penv;N;i p; nð Þ

Penv;N;i p; nð Þ
; (2)

where SþN denotes the noisy speech and N denotes the

noise alone.

C. Binaural processing stage

The binaural unmasking stage is implemented as

described in Wan et al. (2014). The jittered peripheral enve-

lopes from the monaural stages are used as inputs to the EC

process. The EC processing is assumed to be independent in

each channel, and performed in short overlapping time

frames. A time-frequency unit is denoted as U(p, k), where p
again denotes the peripheral filter, and k is the kth frame,

which differs from the ith segment of the modulation-

domain multi-resolution process. Each frame, k, is 20 ms,

whereas the multi-resolution segments, i, can vary in dura-

tion. The overlap between frames is 50% (10 ms). The equal-

ization process in each unit selects the optimal ITD, s0, and

the optimal ILD, a0, using the following equations:

s0 p; kð Þ ¼ arg max
s

qp;kf g; jsj < p
xp
;

a0 p; kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FN;L p; kð Þ
FN;R p; kð Þ

s
; (3)

where qp,k is the normalized cross-correlation function of the

left and right ears within the unit, FN,L(p, k) and FN,R(p, k)

are the masker energy for the left and right ear, respectively,

and x is the center frequency of channel p. The unmasked

output, Yp,k(t), for the unit U(p, k) after cancellation is calcu-

lated as

FIG. 1. Diagram of the model structure. Solid lines denote the path of the

speech-plus-noise (SþN) mixture and the dash lines show the path of the

noise alone (N). The values a0 and s0 represent the optimal parameters

selected by the equalization process.
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Yp;k tð Þ ¼ Wk tð Þ
(

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 p; kð Þ

p EL p; tð Þ tþ s0 p; kð Þ
2

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0 p; kð Þ

p
ER p; tð Þ t� s0 p; kð Þ

2

� �)
; (4)

where the subscripts L and R denote the left and right ear,

respectively, and Wk(t) is a rectangular window function for

the frame k, which can be expressed as

WkðtÞ ¼
(

1;

0;

ðk � 10Þms � t � ðk � 10Þ þ 20 ms;

otherwise:

(5)

Subsequently, the binaural signal, Bp, is reconstructed for

each channel by summing over all overlapping frames

Bp tð Þ ¼ 1

2

X
k

Yp;k tð Þ: (6)

The unmasked outputs for the noisy speech, BS þ N,p,

and the noise alone, BN,p, are then used as inputs to the mod-

ulation filtering stage of the mr-sEPSM, and, subsequently,

to the SNRenv calculation. This yields BU-SNRenv(p, n, t), a

binaurally unmasked SNRenv, for each peripheral channel,

modulation channel, and multi-resolution frame.

D. Binaural selection stage

The binaural selection device selects the best SNRenv,

denoted as the “binaural SNRenv” (B-SNRenv), between the

better-ear SNRenv, (BE-SNRenv,i) and the binaurally

unmasked SNRenv,i (BU-SNRenv,i) for each multi-resolution

segment [note that the (p, n, t) indexing has been omitted for

the sake of brevity],

B-SNRenv;i ¼ maxðBE-SNRenv;i;BU-SNRenv;iÞ; (7)

where BE-SNRenv,i is the maximum between the left and

right SNRenv,i for each segment

BE-SNRenv;i ¼ maxðSNRenv;L;i; SNRenv;R;iÞ: (8)

The B-SNRenv is then averaged over all segments, In, of each

modulation channel

B-SNRenv p; nð Þ ¼
1

In

XIn

i¼1

B-SNRenv;i p; nð Þ; (9)

yielding a 9� 22 array of values. The time-averaged

B-SNRenv is first combined across modulation filters

B-SNRenvðpÞ ¼
X9

n¼1

B-SNR2
envðp; nÞ

" #1=2

(10)

and then across peripheral filters

B-SNRenv ¼
X22

p¼1

B-SNR2
envðpÞ

" #1=2

: (11)

E. Decision device

The overall B-SNRenv is converted to a sensitivity

index, d0, of an “ideal observer” (Jørgensen and Dau, 2011),

using the relation

d0 ¼ kðB-SNRenvÞq; (12)

where k and q are parameters independent of the experimen-

tal conditions. d0 is converted to intelligibility using an

m-alternative forced choice decision model, combined with

an unequal variance Gaussian model expressed as

Pcorrect d0ð Þ ¼ U
d0 � lNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

S þ r2
N

q
0
@

1
A; (13)

where U denotes the cumulative normal distribution. The

values of rN and lN are determined by the number of

response alternative, m [see the Appendix of Jørgensen and

Dau (2011) for details]. For open-set paradigms, m is set to

8000, which reflects the number of words in a normal listen-

er’s vocabulary. The value of rS is a free parameter fixed by

fitting model predictions to speech intelligibility data in a

condition with a SSN masker. The percentage correct at the

output of the model is denoted as B-sEPSM.

Replacing the B-SNRenv by either BE-SNRenv or BU-

SNRenv in Eqs. (9)–(13) provides two alternative model out-

puts, BE-sEPSM and BU-sEPSM, where only the better-ear

or only binaural-unmasking stages are used, respectively.

III. METHODS

A. Experiment 1: Multiple maskers in an anechoic
condition

1. Rationale

This experiment investigated the effects of multiple spa-

tially distributed maskers in an anechoic condition on spatial

release from masking (SRM) using the data of Hawley et al.
(2004). They systematically measured SRTs as a function of

masker azimuth, masker type, and number of maskers using

the Harvard IEEE corpus (Rothauser et al., 1969). The inter-

ferers were either speech (not considered in the current study

because of potential differences in informational masking

compared to the other conditions), reversed speech (from the

same corpus), SSN, or speech-modulated speech-shaped

noise (SMSSN). All maskers were matched to the spectrum

of the target sentences and either one, two, or three maskers

were presented at once. Hawley et al. showed that SRM was

larger when multiple voiced interferers were located at dif-

ferent locations from the target, compared to conditions

when a single voiced masker was presented. This suggested

that a short-term binaural process is critical. Wan et al.
(2010) and Wan et al. (2014) used these same data to vali-

date their long-term and short-term EC models.

2. Experimental conditions

The Loizou (2007) recording of the Harvard IEEE cor-

pus, sampled at 25 kHz, was used for the target material. The
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SSN was also taken from Loizou (2007) and was created by

filtering stationary noise to have the same long-term spec-

trum as the speech material. The SMSSN was created by

applying the broadband envelope of a sentence from the

speech corpus to the SSN. The envelope was extracted by

low-pass filtering the half-wave rectified speech signal with

a first-order Butterworth filter with a 40-Hz cutoff frequency

(Hawley et al., 2004). The stimuli were spatialized using the

head-related transfer functions (HRTFs) of the HMS II artifi-

cial head (HEAD acoustics GmbH, Germany) from the

AUDIS database (Blauert et al., 1998), at angles of 0�, 30�,
60� or 90�. One to three maskers were located in the front

(0�, 0�, 0�), to the side (90�, 90�, 90�), distributed on the

right (30�, 60�, 90�), or distributed to the left and the right

(�30�, 60�, 90�) [see Table I in Hawley et al. (2004) for the

full layout]. The speech level was fixed at 65 dB sound pres-

sure level (SPL) and the masker levels were independently

set to desired SNRs, before HRTF filtering; adding maskers

increased the total interferer level.

3. Simulations

Simulations obtained with the proposed model (B-

sEPSM) were carried out for SNRs ranging from �24 to

12 dB in 3 dB increments. The simulated SRTs corresponded

to the SNR at which the simulated intelligibility was 50%,

using linear interpolation where necessary. The final SRT rep-

resented the average SRT for 30 randomly selected sets of tar-

get and maskers. The condition with a single SSN masker,

colocated with the target, and spatialized using the AUDIS

HRTFs was considered as the reference condition. Because

word score data were unavailable in this condition, a

Gaussian psychometric function, c(x), with an anechoic SRT,

la, and a standard deviation, r, was first fitted based on the

anechoic word score data of Bernstein and Grant (2009) using

c xð Þ ¼ erfc
� x� lað Þffiffiffi

2
p

r

� �,
2; (14)

where x represents the SNRs, c is the proportion correct, and

erfc is the complementary Gauss error function. Then, la

was replaced by the SRT measured by Hawley et al. (2004)

in the colocated condition with a single SSN masker

(�3.40 dB SNR), yielding a modified psychometric function,

c0(x). The parameters of the model’s ideal observer, k and q,
were adjusted to minimize the root-mean-square error

(RMSE) between the simulations obtained with the “left ear”

model and the psychometric function c0(x). The constants rs

and m of the observer were fixed to 0.6 and 8000, respec-

tively. The observer parameters were kept constant through-

out experiment 1. Table I shows the summary of the ideal

observer parameters and constants for all three experiments.

B. Experiment 2: Single masker in reverberant
conditions

1. Rationale

In contrast to experiment 1, experiment 2 considered the

effects of a single masker of different types, but in

reverberant conditions, using the data of Beutelmann et al.
(2010). They measured binaural SRTs in a combination of

four different rooms, three target-masker azimuth separa-

tions, and three masker types. The speech material was the

Oldenburg Sentence Test in noise (Wagener et al., 1999),

which consists of a closed set of meaningful five-word sen-

tences. The rooms included an anechoic room, a standard

IEC listening room (not used in the current study), a typical

classroom (7� 6.9� 3.2 m3, approximately 210 m3) and a

church (outer dimensions: 63� 32� 22 m, approximately

22 000 m3). The interferers were either stationary SSN (sta-

tionary), 20-talker babble (babble), or single-talker modu-

lated noise (single-talker). Beutelmann et al. (2010) found

an effect of azimuth on the SRM (a 105� separation yielded

a larger SRM than a 45� separation) and this effect was larg-

est in the anechoic condition. They also showed that the

masker type had a significant effect on the SRM and that

speech intelligibility was positively correlated with the mod-

ulation depth of the masker. SRM was larger in the anechoic

conditions, than in the reverberant conditions. The masker

types used by Beutelmann et al. (2010) were similar to the

ones used by Hawley et al. (2004) but the different room

types are critical to validate that the proposed model can

capture the effects of reverberation on SRM.

2. Conditions

The SSN was the one provided with the Oldenburg

Sentence Test, which was created by a random superposition

of the material’s sentences. The multi-talker babble was the

“CD101RW2” noise from the Auditec CD, created as the

mixture of 20 talkers reading different texts (Auditec, 2006).

The single-talker modulated noise was the “ICRA5” noise

(Dreschler et al., 2001). All stimuli were sampled at

44.1 kHz. The noise level was fixed at 65 dB SPL and the tar-

get level was adjusted to the desired SNRs. Both the target

and masker levels were adjusted after HRTF filtering. The

stimuli were spatialized using virtual impulse responses cre-

ated with the ODEON software version 8.0 (Kongens

Lyngby, Denmark; Christensen, 2005). The anechoic, the

classroom and the church conditions were used. Three spa-

tial setups were used: (1) the target and the masker were

colocated 3 m in front of the listener, (2) the target was 3 m

in front of the listener and the masker was 2 m away, at 105�

azimuth, and (3) the target was 6 m in front of the listener

and the masker was 4 m away, at �45� azimuth. In the third

condition, the listener was placed close to a wall on the right

side. See Beutelmann et al. (2010) for complete details about

the listening test setup.

TABLE I. Calibrated values of the parameters k and q, and of the constants

rs and m of the ideal observer for the different experiments.

Condition k q rs m

Exp. 1: Hawley et al. (2004) 0.82 0.31 0.6 8000

Exp. 2: Beutelmann et al. (2010) 0.04 1.42 0.9 50

Exp. 3: L}ocsei et al. (2015) 1.14 0.235 0.6 8000
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3. Simulations

Simulations were obtained for SNRs ranging from �36

to 6 dB in 3 dB steps. The final simulated SRT was the aver-

age SRT for 30 randomly selected target and masker pairs.

The reference psychometric function, p, was created follow-

ing Wagener and Brand (2005),

p L; SRT; sð Þ ¼ 100 � 1

1þ e4s SRT–Lð Þ ; (15)

where L represents the given SNRs, s is the slope around the

50% point, and SRT is the SNR at the 50% points. s was set

to 0.18/dB according to Wagener and Brand (2005, their

Table IV) for the OLSA material with an SSN masker, and

SRT was the median SRT in the spatialized condition meas-

ured by Beutelmann et al. (2010) (�7.23 dB, their Fig. 6) for

the same material. The ideal observer parameters in the

proposed model were fit such as to minimize the RMSE

between the “left-ear” of the model and that psychometric

function. The parameters were kept constant for all other

conditions in this experiment. The observer’s constants, rs

and m, were fixed to 0.9 and 50, respectively, to account for

the increased redundancy in the speech material.

C. Experiment 3: ITD-only condition

1. Rationale

Experiment 3 investigated the role of the EC process

using a condition where the target and masker were lateral-

ized to the left or to the right, using a fixed interaural delay

(ITD) of 687.5 ls (L}ocsei et al., 2015). The speech was

played in the presence of SSN that was either lateralized to

the same side as the speech, denoted as condition S11, or to

the opposite side, denoted as condition S01. L}ocsei et al.
(2015) found a masking release of about 4 dB when the

masker was lateralized to the opposite side. In this condition,

no better-ear benefit can be expected because the signal at

both ears is the same, except for a short delay used for the

lateralization. Therefore, the only cues available should be

interaural differences, which should be captured by the EC

process.

This experiment was akin to the SpN0 condition often

used as an example of pure-tone BMLD [see Levitt and

Rabiner (1967), and Culling et al. (2004)]. In such a condi-

tion, listeners showed a masking release as large as 12 dB

when the target tone was presented out of phase (p), com-

pared to the in-phase presentation of the target (0; Levitt and

Rabiner, 1967). Release from masking due to ITD or out-of-

phase presentation has successfully been modeled for pure-

tone signals (Levitt and Rabiner, 1967) and for speech sig-

nals using an EC-like process (Culling et al., 2004).

2. Conditions

The speech material was the DAT corpus (Nielsen

et al., 2014), sampled at 48 kHz and recorded with female

speakers. The DAT corpus consists of unique meaningful

Danish sentences constructed as a fixed carrier sentence with

two interchangeable target words. The masker was stationary

noise shaped to have the same long-term spectrum as the

speech material. The target level was fixed at 65 dB SPL and

the masker level was adjusted to the desired SNR.

3. Simulations

Simulations were obtained for 30 randomly selected

sentences and SSN maskers, and for SNRs from �12 to 9 dB

in 3 dB steps. The signals were lateralized to the left or right

using a fixed 33 sample delay (687.5 ls). The final simulated

SRT was the average across target sentences. The ideal

observer’s parameters were fit to minimize the RMSE

between the “left-ear” of the model and the word-scores as a

function of SNR in the colocated, S11, condition, as meas-

ured by L}ocsei et al. (2015). The ideal observer’s rs and m
were set to 0.6 and 8000, respectively (Jørgensen et al.,
2013).

IV. RESULTS

A. Experiment 1: Multiple maskers in an anechoic
condition

Figure 2 shows the simulated SRTs obtained with the

proposed model (B-sEPSM; black squares), those obtained

with the better-ear only version of the model (BE-sEPSM;

dotted line) as well as the binaural-unmasking version (BU-

sEPSM; dashed line) as a function of the masker(s) angle(s).

Furthermore, the STEC predictions from Wan et al. (2014)

(grey triangles) and the measured data from Hawley et al.
(2004) (open squares) are shown. The three columns corre-

spond to one (left), two (middle), or three maskers (right),

respectively. The upper panels show data and simulations

for the stationary SSN maskers, the middle panels for

SMSSN maskers, and the bottom panels for reversed speech.

Figure 3 is a replot of the data and predictions of Fig. 2

where the thresholds are represented in terms of a SRM rela-

tive to the condition where the target and the maskers were

colocated.

Overall, there was a good agreement between the

B-sEPSM simulations and the data. The Pearson correlation

coefficient across all conditions was 0.91 and the prediction

RMSE was 3.0 dB. For the STEC, the correlation coefficient

was 0.97 the RMSE was 1.3 dB SNR. Thus, the RMSE was

larger for the B-sEPSM than for the STEC but, unlike the

STEC, the B-sEPSM was fit only once for all conditions. In

contrast, the STEC was fit to the 90� condition for each com-

bination of n maskers and masker type, i.e., for each sub-

figure of Fig. 2 (Wan et al., 2014).

In the SSN condition (upper panels), the B-sEPSM sim-

ulations were slightly lower than in the data but the amount

of SRM was well described for all numbers of maskers. In

the SMSSN masker condition (middle panels), the B-sEPSM

correctly accounted for the masker-type dependency of the

SRTs in the case of the single masker. The B-sEPSM pre-

dicted an increase in SRTs with increasing number of

maskers, consistent with the measured data; however, the

SRTs were on average 4.76 dB larger than in the data in the

condition with three SMSSN maskers. The simulated SRM

was found to be the same as in the data with two SMSSN
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maskers, but was larger by about 4 dB with three maskers

when all maskers were at different locations. The B-sEPSM

predicted SRTs up to 8 dB higher in the three SMSSN

maskers condition compared to the three SSN maskers con-

dition. This is in contrast to the data, where the SRTs dif-

fered, on average, by only 1 dB between the SSN and

SMSSN conditions when there were multiple maskers. Thus,

the addition of a second or third SMSSN masker decreased

the SNRenv more than the addition of SSN maskers. In the

reversed-speech masker condition (lower panels), the B-

sEPSM simulated SRTs were below the measure ones.

However, as in the data, the simulated SRTs increased with

the number of maskers, suggesting that the B-sEPSM could

correctly account for intelligibility as a function of the num-

ber of reversed-speech maskers.

B. Experiment 2: Single masker in reverberant
conditions

Figure 4 shows the measured SRTs from Beutelmann

et al. (2010) (open squares), together with the B-sEPSM pre-

dictions (black squares), the simulations obtained with the

better-ear (BE-sEPSM; dotted lines) and binaural-unmasking

(BU-sEPSM; dashed lines) versions of the model as a func-

tion of the masker azimuth. Furthermore, the stBSIM predic-

tions (grey bullets; replotted from Beutelmann et al., 2010)

are shown for comparison. The three columns correspond to

the anechoic, classroom, and church conditions, respectively.

The upper panels show data and predictions for the stationary

masker, the middle panels show the corresponding results for

the babble masker, and the bottom panels show the results

obtained for the single-talker modulated noise masker.

Overall, there was a good agreement between the pre-

dictions and the data. The B-sEPSM Pearson correlation

coefficient across all conditions was 0.91 and the average

prediction RMSE for the B-sEPSM was 6.5 dB. In contrast,

the Pearson coefficient for the stBSIM was 0.89 and the

RMSE was 3.65 dB.

In the anechoic condition (left panels), the B-sEPSM

produced a larger SRM than that found in the data when the

masker was stationary noise or single-talker noise. A similar

SRM as in the data was found when the maskers were babble

noise. In the classroom condition (middle column), the

B-sEPSM accurately accounted for the SRM but there was a

negative offset for all masker types. In the church condition

FIG. 2. Mean speech reception thresh-

old data (open squares; Hawley et al.,
2004) and predictions obtained with

the proposed model (black squares; B-

sEPSM) and its alternate outputs, BE-

sEPSM (dotted lines) and BU-sEPSM

(dashed lines) as a function of

masker(s) angle(s) for SSN masker(s)

(upper panels), SMSSN masker(s)

(middle panels), and reversed speech

(bottom panels). For comparison,

STEC model predictions are shown as

grey triangles for reference (Wan

et al., 2014). The left panels show the

condition with one masker only; the

middle panels show the conditions

with two maskers; and the right panels

show the conditions with three

maskers.

FIG. 3. Replot of the data and predictions of Fig. 2 as SRM relative to the

colocated condition.
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(right column), the SRM was also correctly accounted for by

the B-sEPSM, except for a negative offset which was largest

for the single-talker babble noise. Overall, the B-sEPSM off-

set seemed to be partly due to the BU-sEPSM contributions,

which were consistently lower than the BE-sEPSM contribu-

tions to the overall SNRenv. Nonetheless, the large offset

observed in the reverberant conditions for all maskers was

due to the particulars of the intelligibility transformation for

the B-sEPSM. The sEPSM framework is sensitive to the

type of SSN used in the reference condition; white-noise fil-

tered to have the same long-term average spectrum as

speech, and SSN created by the random superposition of

speech signals yield different amounts of masking release. A

smaller offset could be obtained if the ideal observer was fit

to the B-sEPSM, rather than to the “left-ear” SNRenv, but the

resulting binaural model could not be analyzed in terms of

the benefit compared to one ear alone in the colocated

condition.

Figure 5 is a replot of the data and predictions from Fig. 4

as spatial release from masking relative to the colocated condi-

tion. The data from Beutelmann et al. (2010) showed that

SRM decreased with increasing amounts of reverberation,

probably as the result of reduced head shadow effect which

decreases the BE benefit (Lavandier and Culling, 2010; Plomp,

1976). Reverberation also decorrelates the signals that reaches

both ears, which reduces the efficacy of the EC process

(Lavandier and Culling, 2007). These effects were captured by

the BE-sEPSM and the BU-sEPSM outputs, respectively, and

therefore, by the B-sEPSM, for all masker types, as shown by

the correctly predicted SRM (cf. Fig. 5, second and third

columns).

Release from masking with a fluctuating masker, rela-

tive to a stationary masker, was also reduced in the presence

of reverberation; the SRT in the colocated single-talker

masker church condition was about 12 dB higher (�18.7 to

�6.95 dB SNR) than in the anechoic condition. None of the

models accurately predicted this large SRT increase; the B-

sEPSM predicted an increase of 3.65 dB and the stBSIM an

increase of 6.10 dB.

C. Experiment 3: ITD-only condition

The left panel of Fig. 6 shows the measured SRTs (open

squares) from L}ocsei et al. (2015), the B-sEPSM predictions

(black squares), as well as the predictions from the better-

ear-only version of the model (BE-sEPSM; dotted line and

diamonds) and the binaural-unmasking version (BU-sEPSM;

dashed line and circles). Target and masker were colocated

to the left in the S11 condition. In the S01 condition, the

FIG. 4. Median speech reception

thresholds data measured by

Beutelmann et al. (2010) (open

squares), B-sEPSM predictions (black

squares), BE-sEPSM predictions (dot-

ted lines), BU-sEPSM predictions

(dashed lines), and stB- SIM predic-

tions (grey bullets; Beutelmann et al.,
2010) as a function of the azimuth of

stationary SSN (upper panels), babble

noise (middle panels), or a single-

talker modulated noise (bottom

panels).

FIG. 5. Replot of the data and predictions of Fig. 4 as spatial release from

masking relative to the colocated condition.
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target was lateralized to the left and the masker was lateral-

ized to the right. The right panel shows the same data and

predictions replotted as SRM relative to the S11 condition.

The B-sEPSM predicted SRTs lower than the measured ones

in the S11 condition even though the model was fitted to that

condition. This can be explained by the fact that the B-

sEPSM was fit to the “left-ear” output only, rather than to

the complete model output. Consequently, there seems to be

a small advantage inherent to the binaural presentation in

this condition, compared to the monaural presentation. The

B-sEPSM produced an SRM of about 2 dB, compared to the

4 dB observed in the data. The BE-sEPSM output predicted

no release from masking because there was no BE benefit

possible; the masker was identical in both ears except for the

fixed delay which is about an order of magnitude shorter

than all processing windows in the model. In contrast, the

BU-sEPSM output could account for all the SRM observed

in the data.

V. DISCUSSION

This study described a binaural extension of the mr-

sEPSM model framework, which combined monaural imple-

mentations of the mr-sEPSM with the EC model implementa-

tion of Wan et al. (2014). The regular mr-sEPSM process was

applied to the envelopes at the output of the EC process, and

a selection stage selected the best SNRenv from the left-ear,

the right-ear—equivalent to better-ear processing—or the bin-

aural unmasking pathway. The model was validated against

the data of Hawley et al. (2004), Beutelmann et al. (2010),

and of L}ocsei et al. (2015). Overall, the correlation coeffi-

cients between simulated and measured SRTs were equal to

0.91. See Table II for a summary of all model performances.

A. Comparison to other modeling approaches

Both the proposed model and the STEC (Wan et al.,
2014) had correlation coefficients above 0.9 in experiment 1

(Hawley et al., 2004). However, the two models differ in a

few important ways. Unlike the STEC, the B-sEPSM

required a single parameter fit for the intelligibility transform

for the whole experiment, rather than once per sub-

condition. In fact, the B-sEPSM, and sEPSM framework in

general, requires a single parameter fit per speech material.

In contrast, the STEC approach was validated using a differ-

ent SII criterion (SII corresponding to 50% intelligibility) for

each type and number of maskers. The generality of the

sEPSM approach to model fitting was validated in the cur-

rent study, as well as in Jørgensen and Dau (2011) and

Jørgensen et al. (2013). Given the appropriate reference con-

dition, which is typically in the presence of an SSN masker,

the mr-sEPSM and its variants could account for a large

range of processing or masker types, which means that the

model requires less a priori knowledge about each condition.

Another difference is that in the B-sEPSM, the BE and BU

pathways are processed using similar time-frames, i.e., all

pathways use the same multi-resolution approach to slice the

time signals into segments. This means that the B-sEPSM

can account for the monaural presentation of speech against

a modulated masker because all pathways include short-term

processing of the signals, and therefore the B-sEPSM would

be compatible with the monaural mr-sEPSM. In contrast,

only the BU pathway of the STEC considers a short-term

process; the left- and right-ear pathways are applied to the

long-term signals only. This is an important limitation of the

STEC approach, considering the ability of the auditory sys-

tem to extract information from BE glimpses, even if they

shift across ears (Brungart and Iyer, 2012).

In experiment 2, the proposed model had a similar cor-

relation coefficient as the stBSIM, but a slightly larger

RMSE. Both the B-sEPSM and the stBSIM required a single

parameter fit to convert the output of their decision metric to

intelligibility. Unlike the B-sEPSM and the STEC, which ex-

plicitly separate the BE from the BU processes, the stBSIM

implicitly includes the BE process in its closed-form calcula-

tion of the effective SNR [Beutelmann et al., 2010, their Eq.

(12)]. It would be possible, however, to create a BE-only

version of the stBSIM by removing the ITD-related parame-

ters from that equation, or conversely, to create a BU-only

version of the model by removing the ILD-related parame-

ters. However, this binding of the two binaural processes

limits the feasibility of modifying the processes

TABLE II. Summary of correlation coefficients, r2, and RMSEs (in dB) for

each model and in experiments 1 and 2. The proposed model is the

B-sEPSM. BE-sEPSM and BU-sEPSM are alternate outputs which consider

only the better-ear, or only the binaural unmasking, respectively. The STEC

model is from Wan et al. (2014) and the stBSIM is from Beutelmann et al.
(2010). There are no performance values for experiment 3 because it con-

sisted of only two data points.

Model Exp. 1, r2/RMSE Exp. 2, r2/RMSE

B-sEPSM 0.91/3.0 0.91/6.5

BE-sEPSM 0.83/4.4 0.91/4.1

BU-sEPSM 0.90/3.5 0.92/5.4

STEC 0.97/1.30 —

stBSIM — 0.89/3.65

FIG. 6. The left panel shows speech reception threshold data (open squares)

from L}ocsei et al. (2015), B-sEPSM predictions (black squares), BE-sEPSM

predictions (solid lines), and BU-sEPSM predictions (dashed lines) as a

function of condition. In condition S11, both target and maskers are lateral-

ized to the left and in S01, the target is lateralized to the left and the masker

to the right. The right panel shows the same data and predicted, replotted as

spatial release from masking relative to the S11 condition.
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independently, e.g., to use different time scales for the frame

processing, or to introduce different amounts of sluggishness

in each pathway (Culling and Summerfield, 1998; Culling

and Mansell, 2013).

Neither the model of Lavandier and Culling (2010) nor

any of its extensions was considered in the present study

(Lavandier et al., 2012; Collin and Lavandier, 2013). Of the

extensions, only the one of Collin and Lavandier (2013)

could possibly account for the masking release due to fluctu-

ating maskers used in the majority of conditions considered

in this study, because it is the only version that includes a

short-term process. Those models are fundamentally limited

because they cannot account for the effect of reverberation

on the speech itself because they are not “signal-based,” i.e.,

they do not use speech signals as targets, but rather rely on

SSN as the target or on binaural room impulses. These sim-

plifications make those model faster to compute than the pro-

posed model as well as the STEC and the stBSIM, which

makes them better tools for, e.g., acoustical room design but

limits their applicability in certain scenarios.

Compared to the other models [STEC, stBSIM,

Lavandier and Culling (2010), and even the binaural STI

(Van Wijngaarden and Drullman, 2008)], the B-sEPSM

avoids the need for the explicit frequency weighting from the

SII. Instead, the frequency and modulation frequency weight-

ings are limiting the processing to “audible” audio and modu-

lation frequencies (Chabot-Leclerc et al., 2014). Therefore,

although the B-sEPSM includes the additional modulation-

frequency dimension to the model framework, it reduces the

number of fitted parameters required.

Overall, the modeling approach taken by the B-sEPSM,

the STEC, and the BSIM did not differ largely. All three

models combined a short-term EC process with time-fre-

quency-specific cancellation parameters and a (short- or

long-term) BE process. The main difference lay in the deci-

sion metric used by the B-sEPSM, namely, the SNRenv rather

than the audio SNR, and the fact that the B-sEPSM included

an envelope-domain audio-frequency-selective process.

B. Role of the decision metric

The SII-based models would fail in conditions with non-

linear processing, such as noise reduction (Rhebergen et al.,
2009). The stBSIM as well as the model Collin and

Lavandier (2013) are also fundamentally limited in that they

cannot account for the effects of reverberation on the speech

itself, because they do not use speech as target signal. Only

the binaural STI model (Van Wijngaarden and Drullman,

2008), which uses the modulation power reduction after

processing as the decision metric, could account for effects

of modulation processing, but this approach is also limited

because it cannot account for the intelligibility with modu-

lated maskers. The B-sEPSM is the only binaural modeling

framework that could account for multiple modulated

maskers, reverberation on the target and maskers, as well as

non-linear processing. Although these types of processing

were not considered in the current study, the mr-sEPSM has

been validated in such conditions (Jørgensen and Dau, 2011;

Jørgensen et al., 2013; Chabot-Leclerc et al., 2014). No

audibility-based model has been demonstrated to account for

the change of intelligibility due to amplitude compression

(Rhebergen et al., 2009). Although the mr-sEPSM was not

shown to account for the deleterious effect of amplitude

compression on speech intelligibility, it could account for

spectral subtraction, and, also to phase jitter, given the addi-

tion of an across-channel process (Chabot-Leclerc et al.,
2014).

C. Contributions of better-ear and binaural unmasking
processes

The explicit separation of the BE and BU pathways in

the B-sEPSM makes it possible to analyze their contribu-

tions separately. Moreover, the performance of those alter-

nate models can be an indicator of the respective importance

of the processes involved in binaural hearing. Overall, the

BE- and BU-only simulations, denoted as BE-sEPSM and

BU-sEPSM, respectively, showed good agreements between

data and simulations. They are depicted as dotted and dashed

lines, respectively, in Figs. 2–6. In experiment 1, the BE-

sEPSM had an overall correlation coefficient of 0.83 and the

BU-sEPSM a correlation coefficient of 0.90, which both

compare favorably with the complete model’s correlation of

0.91 (see Table II for overview). The performances were

similar in experiment 2, with a correlation of 0.91 for the

BE-sEPSM, 0.92 for the BU-sEPSM, and 0.91 for the com-

plete B-sEPSM. In experiment 3, the BE-sEPSM model

failed completely to account for the masking release due to

ITDs, as expected, whereas the BU-sEPSM predicted the

masking release. The performance of the BE-only model

supported the idea that better-ear glimpsing, both in time

and in frequency, can account for large parts of spatial

release from masking (Brungart and Iyer, 2012; Culling and

Mansell, 2013) in realistic conditions. Glyde et al. (2013)

suggested this statement to be valid only if the maskers pro-

duced mostly energetic masking, i.e., did not cause any con-

fusion between the target and the maskers. This is in contrast

to conditions where informational masking may be domi-

nant, such as with certain speech maskers. Therefore, the

good performance of the BE-sEPSM can be attributed to the

fact that the maskers considered in the present study may

have provided a similar degree of informational masking

(SSN, SMSSN, multi-talker babble, and reversed-speech).

The BU-sEPSM model performed equally well as the

complete model (B-sEPSM) overall, and could account for

the entire SRM in experiment 3. The difference in simulated

SRT between the BE-sEPSM and the BU-sEPSM can be

attributed to the fact that both models used the same “left-

ear” reference for the fitting of the ideal observer. This dis-

crepancy suggests that either they should be fitted separately,

or that the processes should be modified as to produce the

same SNRenv values in the same colocated condition. In

experiments 1 and 2, the BU output “dominated” the

B-sEPSM output, because its SNRenv values were larger

than that of the BE-sEPSM (which leads to lower SRTs), as

it is especially clear in Fig. 2. Also, the BU-sEPSM tended

to predict a larger masking release than the BE-sEPSM (cf.

Figs. 3 and 5). It is unclear if this dominance of the BU
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pathway is an artifact of the modeling or if it is a property of

the human binaural system. If the lower SRT predicted by

the BU-sEPSM compared to the BE-sEPSM are modeling

artifacts, then they could possibly be mitigated by the inclu-

sion of sluggishness to the EC process [Culling and

Summerfield (1998); Culling and Colburn (2000)] or by an

increase of the EC jitters, which would limit its efficacy.

Additionally, it may be that the constant short 20 ms win-

dows of the EC process give the BU an advantage over the

monaural pathways, where the multi-resolution approach is

used. The EC window lengths could be adjusted or limited

to restrict this advantage.

Some binaural models of speech intelligibility consider

binaural unmasking as an additive process, while others do

not. According to Culling and Mansell (2013), intelligibility

benefits due to ILD and ITD seem to be additive. The model-

ing approach of Lavandier and Culling (2010) works under

the same assumption that the total binaural advantage is the

sum of the BE advantage and the advantage due to ITD proc-

essing (BMLD). In the model, only ILDs are considered in

the BE pathway and only ITDs are considered in the BMLD

pathway. The BSIM approach also indirectly uses this

approach, where the ITD contributions can improve the SNR

beyond the “better-ear” SNR (Beutelmann et al., 2010). In

contrast, the B-sEPSM and the STEC use a selection

between the BU and BE, as if they are two separate proc-

esses and one of them can outperform the other in a given

situation. In these two models, both ILDs and ITDs are con-

sidered in the BU pathway. Culling et al. (2004) studied the

role of ILDs and ITDs using a subset of the conditions pre-

sented by Hawley et al. (2004). They considered the condi-

tions with three speech or three SSN maskers, but presented

binaural signals that had only ILDs, only ITDs, or were

unmodified. They found the SRT patterns of the ITD-only

and unmodified conditions to be similar, although the ITD-

only condition had smaller differences between the spatial

configurations. The ILD-only condition showed an SRM

only when all maskers were on the right, otherwise the SRTs

were the same as when all maskers were colocated with the

target. For both masker types, considering the overall binau-

ral advantage as the sum of the BE SRM and of the ITD

SRM would lead to a large overestimation of the SRM in the

unmodified condition. Therefore, in this condition, an

“additive” binaural process is not appropriate and a selection

process, such as in the B-sEPSM and STEC, seems more

suitable.

D. Informational masking

The B-sEPSM predicted the correct SRM in experiment

1 with reversed-speech maskers [cf. Fig. 3 although simu-

lated SRTs were lower than the data (cf. Fig. 2)]. A similar

difference was observed with the SSEC and the STEC (Wan

et al., 2010, 2014) in the same condition. However, the mod-

els could not account for the increased thresholds observed

when target and speech, or reversed-speech maskers, were

colocated (Westermann and Buchholz, 2015b; Carlile and

Corkhill, 2015). This limitation was even more clearly illus-

trated by Wan et al. (2014) in the conditions of Marrone

et al. (2008), where the target was placed at 0� azimuth and

speech or reversed-speech maskers were either colocated

with the target or symmetrically placed around it. The mod-

els predicted SRTs lower than the data in the colocated con-

dition because they could not account for the increased IM.

In this case, IM is attributed to a failure in bottom-up group-

ing and streaming caused by target-masker similarities

(Shinn-Cunningham, 2008). This is in contrast to the other

portion of IM which can be attributed to top-down processes

that cannot select the proper stream due to object similarity

and target uncertainty (Shinn-Cunningham, 2008).

Being a purely bottom-up model, the B-sEPSM could

only be sensitive to the similarity-based IM. However, the

B-sEPSM has “perfect” segregation because of its access to

the noisy mixture and to the maskers-alone signals and there-

fore cannot account for any IM. This means that the B-sEPSM

requires fitting to a condition without IM, otherwise other

simulated thresholds, where IM is not dominant, will be sys-

tematically elevated (e.g., in spatially separated conditions).

On the converse, simulated SRTs in IM-dominated conditions

will be too low if the B-sEPSM is fitted to an IM-free condi-

tion, which is the “default” approach for the mr-sEPSM

framework. To account for the discrepancy between predicted

and measured SRT in IM-dominated conditions, the B-sEPSM

would require an estimate of the bottom-up confusion.

Chabot-Leclerc et al. (2014) showed that it was possible to

capture 7 of the 10 dB of SRM observed when a speech

maskers was moved, on-axis, from 0.5 to 10 m away from the

target in a reverberant environment (Westermann and

Buchholz, 2015a) using the long-term sEPSM. Models based

on the audio SNR (e.g., SII, BSIM) did not predict any SRM.

Therefore, it seems that it is possible to capture some of the

similarity/dissimilarity in the envelope-power representation

which is not available in the audio domain. Consequently, it

should be possible to evaluate the similarity between the

speech and maskers using an estimate of the clean speech rep-

resentation ½Ŝ ¼ ðSþ NÞ � N� and the maskers-alone repre-

sentation in the envelope power domain. A simple “distance”

or “contrast” estimate between the clean speech estimate and

the maskers could be a promising measure of confusions. A

more complex approach for estimating confusions would be to

pair the B-sEPSM with a streaming model (e.g., Elhilali and

Shamma, 2008; Christiansen et al., 2014) and combine their

outputs considering that there are more confusions in a one-

stream percept than in a two-stream percept. It would be par-

ticularly interesting to apply this approach to the output of the

binaural unmasking pathway considering that BE seems to be

sufficient to account for SRM when there is no IM (Glyde

et al., 2013; Brungart and Iyer, 2012; Carlile and Corkhill,

2015).

VI. CONCLUSIONS

The B-sEPSM is a general model framework for pre-

dicting spatial release from masking in realistic and artificial

conditions. It combines an explicit combination of better-ear

and binaural unmasking processes using monaural imple-

mentations of the mr-sEPSM (Jørgensen et al., 2013) and an

EC process (Wan et al., 2014). The B-sEPSM uses the
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SNRenv as the decision metric and was shown to predict the

SRT dependence on: the number of maskers, different

masker types (SSN, SMSSN, babble, and reversed speech),

the masker(s) azimuths, reverberation on the target and

masker, and the ITD of the target and masker.
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