64 research outputs found

    New insights from XRF core scanning data into boreal lake ontogeny during the Eemian (Marine Isotope Stage 5e) at Sokli, northeast Finland

    Get PDF
    Biological proxies from the Sokli Eemian (Marine Isotope Stage 5e) paleolake sequence from northeast Finland have previously shown that, unlike many postglacial records from boreal sites, the lake becomes increasingly eutrophic over time. Here, principal components (PC) were extracted from a high resolution multi-element XRF core scanning dataset to describe minerogenic input from the wider catchment (PC1), the input of S, Fe, Mn, and Ca-rich detrital material from the surrounding Sokli Carbonatite Massif (PC2), and chemical weathering (PC3). Minerogenic inputs to the lake were elevated early in the record and during two abrupt cooling events when soils and vegetation in the catchment were poor. Chemical weathering in the catchment generally increased over time, coinciding with higher air temperatures, catchment productivity, and the presence of acidic conifer species. Abiotic edaphic processes play a key role in lake ontogeny at this site stemming from the base cation- and nutrient-rich bedrock, which supports lake alkalinity and productivity. The climate history at this site, and its integrated effects on the lake system, appear to override development processes and alters its long-term trajectory.Peer reviewe

    Contrasting northern and southern European winter climate trends during the Last Interglacial

    Get PDF
    The Last Interglacial (LIG; 130–115 ka) is an important test bed for climate science as an instance of significantly warmer than preindustrial global temperatures. However, LIG climate patterns remain poorly resolved, especially for winter, affected by a suite of strong feedbacks such as changes in sea-ice cover in the high latitudes. We present a synthesis of winter temperature and precipitation proxy data from the Atlantic seaboard of Europe, spanning from southern Iberia to the Arctic. Our data reveal distinct, opposite latitudinal climate trends, including warming winters seen in the European Arctic while cooling and drying occurred in southwest Europe over the LIG. Climate model simulations for 130 and 120 ka suggest these contrasting climate patterns were affected by a shift toward an atmospheric circulation regime with an enhanced meridional pressure gradient and strengthened midlatitude westerlies, leading to a strong reduction in precipitation across southern Europe. © 2021. The Authors. Gold Open Acces

    Abrupt high-latitude climate events and decoupled seasonal trends during the Eemian

    Get PDF
    The Eemian (the Last Interglacial; ca. 129-116 thousand years ago) presents a testbed for assessing environmental responses and climate feedbacks under warmer-than-present boundary conditions. However, climate syntheses for the Eemian remain hampered by lack of data from the high-latitude land areas, masking the climate response and feedbacks in the Arctic. Here we present a high-resolution (sub-centennial) record of Eemian palaeoclimate from northern Finland, with multi-model reconstructions for July and January air temperature. In contrast with the mid-latitudes of Europe, our data show decoupled seasonal trends with falling July and rising January temperatures over the Eemian, due to orbital and oceanic forcings. This leads to an oceanic Late-Eemian climate, consistent with an earlier hypothesis of glacial inception in Europe. The interglacial is further intersected by two strong cooling and drying events. These abrupt events parallel shifts in marine proxy data, linked to disturbances in the North Atlantic oceanic circulation regime.Peer reviewe

    The Eemian Interglacial at Sokli, northern Finland : A multi-proxy environmental and climatic reconstruction based on a 9 m long lacustrine sediment sequence

    No full text
    Understanding the fundamentals of the Earth’s climate system during the Quaternary Period (the past ca 2.6 million years) is of imminent interest in light of the reported recent climatic changes. The Eemian Interglacial (ca 129,000-116,000 years ago) is the last period before the present interglacial (the Holocene, the last ca 11,700 years) when temperatures were as warm as or warmer than today and may serve as an analogue to future climatic warming. The Eemian is a relatively well-studied period, but many aspects of the interglacial climatic dynamics still remain unresolved. One reason for this is the chronological uncertainties of many records from this time period; another is the relatively uneven distribution of palaeoarchives. Especially from high latitude areas, terrestrial records from the Eemian are few due to the impact of glacial erosion during the Weichselian Glacial (ca 116,000-11,700 years ago). This thesis is based on data from Sokli, N Finland, where cold-based conditions of the Weichselian ice sheets and non-typical bedrock conditions have allowed preservation of an unusually thick Eemian lacustrine deposit in stratigraphic sequence with overlying Weichselian and Holocene deposits. The main purpose of this thesis is to contribute to the knowledge of climate variability in Fennoscandia and the North Atlantic region during the Eemian, and it involves a qualitative multi-proxy reconstruction of the Eemian lake and its development as well as a quantitative reconstruction of the regional Eemian July temperature evolution using subfossil chironomids. Attention is paid also to the identification and characterization of short-term climatic events in the Sokli record. The main contribution of this study is to increase the spatial coverage of Eemian palaeoclimatological data. Specific results include the description of the lake development, identifying phases where non-climatic variables likely affect the quantitative chironomid-based temperature reconstruction, as well as qualitative and quantitative reconstructions of climatic features such as changes in seasonality and temperature. Five major lake phases are distinguished. A glaciolacustrine phase is followed by an early Eemian lake phase characterized by short mixing periods and rising nutrient levels. The following early mid-Eemian lake phase is characterized by a prolonged open water season and high productivity and possibly corresponds to the Eemian climatic optimum. The late mid-Eemian lake phase is characterized by infilling and eutrophic conditions while the late Eemian lake phase reflects shallow, dynamic and cooling conditions. The qualitative study suggests a shift from a higher seasonality in the early Eemian towards more oceanic conditions during the mid-Eemian, while chironomid-inferred July temperatures indicate that near present-day temperatures prevailed at Sokli already from the beginning of the interglacial and that optimum temperatures were only moderately (ca + 1°C) higher  than at present. These results suggest that the climatic development at Sokli followed that of central Europe during the Eemian. Two events characterized by colder and more arid conditions are identified, and can be tentatively correlated to meltwater events registered in marine records from the Nordic seas and subpolar north Atlantic, possibly reflecting the effect that meltwater pulses and related disruptions in the thermohaline circulation had on adjacent continental areas.  At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Submitted. Paper 5: Manuscript.</p

    Contrasting northern and southern European winter climate trends during the Last Interglacial

    Get PDF
    The Last Interglacial (LIG; 130-115 ka) is an important test bed for climate science as an instance of significantly warmer than preindustrial global temperatures. However, LIG climate patterns remain poorly resolved, especially for winter, affected by a suite of strong feedbacks such as changes in sea-ice cover in the high latitudes. We present a synthesis of winter temperature and precipitation proxy data from the Atlantic seaboard of Europe, spanning from southern Iberia to the Arctic. Our data reveal distinct, opposite latitudinal climate trends, including warming winters seen in the European Arctic while cooling and drying occurred in southwest Europe over the LIG. Climate model simulations for 130 and 120 ka suggest these contrasting climate patterns were affected by a shift toward an atmospheric circulation regime with an enhanced meridional pressure gradient and strengthened midlatitude westerlies, leading to a strong reduction in precipitation across southern Europe.Peer reviewe
    • …
    corecore