624 research outputs found

    Fingerprinting antioxidative activities in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A plethora of concurrent cellular activities is mobilised in the adaptation of plants to adverse environmental conditions. This response can be quantified by physiological experiments or metabolic profiling. The intention of this work is to reduce the number of metabolic processes studied to a minimum of relevant parameters with a maximum yield of information. Therefore, we inspected 'summary parameters' characteristic for whole classes of antioxidative metabolites and key enzymes.</p> <p>Results</p> <p>Three bioluminescence assays are presented. A horseradish peroxidase-based total antioxidative capacity (TAC) assay is used to probe low molecular weight antioxidants. Peroxidases are quantified by their luminol converting activity (LUPO). Finally, we quantify high molecular weight superoxide anion scavenging activity (SOSA) using coelenterazine.</p> <p>Experiments with <it>Lepidium sativum </it>L. show how salt, drought, cold, and heat influence the antioxidative system represented here by TAC, LUPO, SOSA, catalase, and glutathione reductase (GR). LUPO and SOSA run anti-parallel under all investigated stress conditions suggesting shifts in antioxidative functions rather than formation of antioxidative power. TAC runs in parallel with GR. This indicates that a majority of low molecular weight antioxidants in plants is represented by glutathione.</p> <p>Conclusion</p> <p>The set of assays presented here is capable of characterising antioxidative activities in plants. It is inexpensive, quick and reproducible and delivers quantitative data. 'Summary parameters' like TAC, LUPO, and SOSA are quantitative traits which may be promising for implementation in high-throughput screening for robustness of novel mutants, transgenics, or breeds.</p

    A novel fluorescent pH probe for expression in plants

    Get PDF
    BACKGROUND: The pH is an important parameter controlling many metabolic and signalling pathways in living cells. Recombinant fluorescent pH indicators (pHluorins) have come into vogue for monitoring cellular pH. They are derived from the most popular Aequorea victoria GFP (Av-GFP). Here, we present a novel fluorescent pH reporter protein from the orange seapen Ptilosarcus gurneyi (Pt-GFP) and compare its properties with pHluorins for expression and use in plants. RESULTS: pHluorins have a higher pH-sensitivity. However, Pt-GFP has a broader pH-responsiveness, an excellent dynamic ratio range and a better acid stability. We demonstrate how Pt-GFP expressing Arabidopsis thaliana report cytosolic pH-clamp and changes of cytosolic pH in the response to anoxia and salt-stress. CONCLUSION: Pt-GFP appears to be the better choice when used for in vivo-recording of cellular pH in plants

    Electrically Triggered All-or-None Ca2+-Liberation during Action Potential in the Giant Alga Chara

    Get PDF
    Electrically triggered action potentials in the giant alga Chara corallina are associated with a transient rise in the concentration of free Ca2+ in the cytoplasm (Ca2+cyt). The present measurements of Ca2+cyt during membrane excitation show that stimulating pulses of low magnitude (subthreshold pulse) had no perceivable effect on Ca2+cyt. When the strength of a pulse exceeded a narrow threshold (suprathreshold pulse) it evoked the full extent of the Ca2+cyt elevation. This suggests an all-or-none mechanism for Ca2+ mobilization. A transient calcium rise could also be induced by one subthreshold pulse if it was after another subthreshold pulse of the same kind after a suitable interval, i.e., not closer than a few 100 ms and not longer than a few seconds. This dependency of Ca2+ mobilization on single and double pulses can be simulated by a model in which a second messenger is produced in a voltage-dependent manner. This second messenger liberates Ca2+ from internal stores in an all-or-none manner once a critical concentration (threshold) of the second messenger is exceeded in the cytoplasm. The positive effect of a single suprathreshold pulse and two optimally spaced subthreshold pulses on Ca2+ mobilization can be explained on the basis of relative velocity for second messenger production and decomposition as well as the availability of the precursor for the second messenger production. Assuming that inositol-1,4,5,-trisphosphate (IP3) is the second messenger in question, the present data provide the major rate constants for IP3 metabolism

    Spectroelectrochemistry: A Survey of In-Situ Spectroscopic Techniques

    Get PDF
    In this technical paper a summary of the available in situ spectroelectrochemical methods, their basic principles, their typical applications, and their limitations is given. With respect to the names of the methods and usual abbreviations, the paper follows the literature as far as possible, but tries to point out inconsistencies. An introductory section gives a summary of the basic equations and introduces the IUPAC recommendations for quantities and symbols

    PHOTO-SENSITIVE LAYERS FORMED FROM POLYMETHYLTHIOPHENE/TiO2NANOCOMPOSITES

    Get PDF
    Nanocomposites of polymethylthiophene (PMT) and titanium dioxide nanoparticles (TiO2)were prepared in core-shell structure, via chemical oxidative polymerization of methylthiophene in the presence of FeCl3catalyst. The electrophoretic deposition (EPD) technique was adopted to prepare the nanocomposite films on ITO plates. Then photoelectrochemical properties of the PMT/TiO2nanocomposite were investigated. Results showed the photo-sensitive properties of TiO2core (n-type semiconductor), PMT shell (p-type semiconductor) and their n-p junction

    Monte Carlo simulation of metal deposition on foreign substrates

    Full text link
    The deposition of a metal on a foreign substrate is studied by means of grand canonical Monte Carlo simulations and a lattice-gas model with pair potential interactions between nearest neighbors. The influence of temperature and surface defects on adsorption isotherms and differential heat of adsorption is considered. The general trends can be explained in terms of the relative interactions between adsorbate atoms and substrate atoms. The systems Ag/Au(100), Ag/Pt(100), Au/Ag(100) and Pt/Ag(100) are analyzed as examples.Comment: 26 pages, 9 figure

    Transcriptional Networks in Epithelial-Mesenchymal Transition

    Get PDF
    Epithelial-mesenchymal transition (EMT) changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs) in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts

    Aequorin-based measurements of intracellular Ca(2+)-signatures in plant cells

    Get PDF
    Due to the involvement of calcium as a main second messenger in the plant signaling pathway, increasing interest has been focused on the calcium signatures supposed to be involved in the patterning of the specific response associated to a given stimulus. In order to follow these signatures we described here the practical approach to use the non-invasive method based on the aequorin technology. Besides reviewing the advantages and disadvantages of this method we report on results showing the usefulness of aequorin to study the calcium response to biotic (elicitors) and abiotic stimuli (osmotic shocks) in various compartments of plant cells such as cytosol and nucleus

    Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor

    Get PDF
    Changes in pH are now widely accepted as a signalling mechanism in cells. In plants, proton pumps in the plasma membrane and tonoplast play a key role in regulation of intracellular pH homeostasis and maintenance of transmembrane proton gradients. Proton transport in response to external stimuli can be expected to be finely regulated spatially and temporally. With the ambition to follow such changes live, a new genetically encoded sensor, pHusion, has been developed. pHusion is especially designed for apoplastic pH measurements. It was constitutively expressed in Arabidopsis and targeted for expression in either the cytosol or the apoplast including intracellular compartments. pHusion consists of the tandem concatenation of enhanced green fluorescent protein (EGFP) and monomeric red fluorescent protein (mRFP1), and works as a ratiometric pH sensor. Live microscopy at high spatial and temporal resolution is highly dependent on appropriate immobilization of the specimen for microscopy. Medical adhesive often used in such experiments destroys cell viability in roots. Here a novel system for immobilizing Arabidopsis seedling roots for perfusion experiments is presented which does not impair cell viability. With appropriate immobilization, it was possible to follow changes of the apoplastic and cytosolic pH in mesophyll and root tissue. Rapid pH homeostasis upon external pH changes was reflected by negligible cytosolic pH fluctuations, while the apoplastic pH changed drastically. The great potential for analysing pH regulation in a whole-tissue, physiological context is demonstrated by the immediate alkalinization of the subepidermal apoplast upon external indole-3-acetic acid administration. This change is highly significant in the elongation zone compared with the root hair zone and control roots
    corecore