165 research outputs found

    Oncogenic RET Kinase domain mutations perturb the autophosphorylation trajectory by enhancing substrate presentation in trans

    Get PDF
    To decipher the molecular basis for RET kinase activation and oncogenic deregulation, we defined the temporal sequence of RET autophosphorylation by label-free quantitative mass spectrometry. Early autophosphorylation sites map to regions flanking the kinase domain core, while sites within the activation loop only form at later time points. Comparison with oncogenic RET kinase revealed that late autophosphorylation sites become phosphorylated much earlier than wild-type RET, which is due to a combination of an enhanced enzymatic activity, increased ATP affinity, and surprisingly, by providing a better intermolecular substrate. Structural analysis of oncogenic M918T and wild-type RET kinase domains reveal a cis-inhibitory mechanism involving tethering contacts between the glycine-rich loop, activation loop, and αC-helix. Tether mutations only affected substrate presentation but perturbed the autophosphorylation trajectory similar to oncogenic mutations. This study reveals an unappreciated role for oncogenic RET kinase mutations in promoting intermolecular autophosphorylation by enhancing substrate presentation

    Functional analysis of RET in MEN2

    Get PDF

    Functional analysis of RET in MEN2

    Get PDF
    De erfelijke kankersyndromen Multipele Endocrine Neoplasieën (MEN2A en 2B) en het verwante syndroom familiaire medullaire schildklierkanker (FMTC; de ziekte van Hirschsprung), worden veroorzaakt door mutaties in het RET-gen. Het promotieonderzoek van Ivan Plaza Menacho was erop gericht de mutante RET eiwitten, zoals die voorkomen bij patiënten met MEN2/FMTC, functioneel te karakteriseren. Uit het onderzoek blijkt dat er verschillen bestaan in signaaloverdracht tussen de verschillende MEN2-geassocieerde mutante RET eiwitten. Deze verschillen leveren waarschijnlijk een bijdrage aan de klinische verschillen, die geassocieerd met de verschillende MEN2, mutaties voorkomen. Op dit moment bestaat er geen effectieve, systematische behandeling van MEN2. Binnen dit onderzoek werd het medicijn Imanitib, een tyrosine kinase remmer, getest. Het blijkt dat Imanitib RET kan remmen. Of het een bruikbaar medicijn zal blijken voor MEN patiënten is echter nog onduidelijk

    Functional analysis of RET in MEN2

    Get PDF

    RET functions as a dual-specificity kinase that requires allosteric inputs from juxtamembrane elements

    Get PDF
    Receptor tyrosine kinases exhibit a plethora of activation mechanisms despite highly homologous catalytic domains. Such diversity arises through coupling of their respective extracellular ligand-binding portions with highly variable intracellular sequences flanking their tyrosine kinase domains and specific patterns of autophosphorylayion sites. Here we show that the juxtamembrane (JM) segment enhances RET catalytic domain activity through Y687, which is also required by the JM-region to rescue an otherwise catalytically-deficient RET Y900/905F activationloop mutant. Structure-function analyses identified interactions between the JMhinge, aC helix and an unconventional activation-loop serine phosphorylation site that by engaging the HRD motif promotes conformational accessibility to phosphotyrosine binding modules and regulatory-spine assembly. We demonstrate that this previously unreported phospho-S909 arises from an intrinsic RET dual-specificity kinase activity, and show an equivalent serine is required for RET signaling in Drosophila. Our findings reveal dual-specificity and allosteric components for the mechanism of RET activation and signaling with important drug-discovery implications

    Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking

    Get PDF
    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling

    Novel targeted therapeutics for MEN2

    Get PDF
    The rearranged during transfection (RET) proto-oncogene was recognized as the multiple endocrine neoplasia type 2 (MEN2) causing gene in 1993. Since then, much effort has been put into a clear understanding of its oncogenic signaling, its biochemical function and ways to block its aberrant activation in MEN2 and related cancers. Several small molecules have been designed, developed or redirected as RET inhibitors for the treatment of MEN2 and sporadic MTC. However, current drugs are mostly active against several other kinases, as they were not originally developed for RET. This limits efficacy and poses safety issues. Therefore, there is still much to do to improve targeted MEN2 treatments. New, more potent and selective molecules, or combinatorial strategies may lead to more effective therapies in the near future. Here, we review the rationale for RET targeting in MEN2, the use of currently available drugs and novel preclinical and clinical RET inhibitor candidates

    Ponatinib is a potent inhibitor of wild-type and drug-resistant gatekeeper mutant RET kinase

    Get PDF
    a b s t r a c t RET kinase is aberrantly activated in thyroid cancers and in rare cases of lung and colon cancer, and has been validated as a molecular target in these tumors. Vandetanib was recently approved for the treatment of medullary thyroid cancer. However, vandetanib is ineffective in vitro against RET mutants carrying bulky aminoacids at position 804, the gatekeeper residue, similarly to drug-resistant BCR-ABL mutants in chronic myeloid leukemia. Ponatinib is a multi-target kinase inhibitor that was recently approved for treatment-refractory Philadelphia-positive leukemia. We show here potent inhibition of oncogenic RET by ponatinib, including the drug-insensitive V804M/L mutants. Ponatinib inhibited the growth of RET+ and BCR-ABL+ cells with similar potency, while not affecting RET-negative cells. Both in biochemical and in cellular assays ponatinib compared favorably with known RET inhibitors, such as vandetanib, cabozantinib, sorafenib, sunitinib and motesanib, used as reference compounds. We suggest that ponatinib should be considered for the treatment of RET+ tumors, in particular those expressing vandetanib-resistant V804M/L mutations

    Hybrid histidine kinase activation by cyclic di-GMP-mediated domain liberation

    Get PDF
    Cytosolic hybrid histidine kinases (HHKs) constitute major signaling nodes that control various biological processes, but their input signals and how these are processed are largely unknown. In; Caulobacter crescentus; , the HHK ShkA is essential for accurate timing of the G1-S cell cycle transition and is regulated by the corresponding increase in the level of the second messenger c-di-GMP. Here, we use a combination of X-ray crystallography, NMR spectroscopy, functional analyses, and kinetic modeling to reveal the regulatory mechanism of ShkA. In the absence of c-di-GMP, ShkA predominantly adopts a compact domain arrangement that is catalytically inactive. C-di-GMP binds to the dedicated pseudoreceiver domain Rec1, thereby liberating the canonical Rec2 domain from its central position where it obstructs the large-scale motions required for catalysis. Thus, c-di-GMP cannot only stabilize domain interactions, but also engage in domain dissociation to allosterically invoke a downstream effect. Enzyme kinetics data are consistent with conformational selection of the ensemble of active domain constellations by the ligand and show that autophosphorylation is a reversible process

    Structural and dynamic determinants for highly selective RET kinase inhibition reveal cryptic druggability.

    Get PDF
    The structural and dynamic determinants for highly selective RET kinase inhibition are poorly understood. Here we demonstrate by applying an integrated structural, computational and biochemical approach that the druggability landscape of the RET active site is determined by the conformational setting of the ATP-binding (P-) loop and its coordination with the αC helix. Open and intermediate P-loop structures display additional druggable vulnerabilities within the active site that were not exploited by first generation RET inhibitors. We identify a cryptic pocket adjacent to the catalytic lysine formed by K758, L760, E768 and L772, that we name the post-lysine pocket, with higher druggability potential than the adenine-binding site and with important implications in the regulation of phospho-tyrosine kinase activity. Crystal structure and simulation data show that the binding mode of highly-selective RET kinase inhibitors LOXO-292 and BLU-667 is controlled by a synchronous open P-loop and αC-in configuration that allows accessibility to the post-lysine pocket. Molecular dynamics simulation show that these inhibitors efficiently occupy the post-lysine pocket with high stability through the simulation time-scale (300 ns), with both inhibitors forming hydrophobic contacts in the pocket further stabilized by pi-cation interactions with the catalytic K758. Engineered mutants targeting the post-lysine pocket impact on inhibitor binding and sensitivity, as well as RET tyrosine kinase activity. The identification of the post-lysine pocket as a cryptic druggable vulnerability in the RET kinase and its exploitation by second generation RET inhibitors has important implications for future drug design and the development of personalized therapies for patients with RET-driven cancers.We thank the Centro Nacional de Investigaciones Oncológicas (CNIO), which is supported by the Instituto de Salud Carlos III and recognized as a “Severo Ochoa” Centre of Excellence (ref. CEX2019-000891-S, awarded by MCIN/AEI/ 10.13039/501100011033) for core funding and supporting this study. This work was further supported by projects: BFU2017-86710-R funded by MCIN/ AEI /10.13039/501100011033 and ERDF “A way of making Europe”, PID2020-117580RB-I00 funded by MCIN/ AEI /10.13039/501100011033, RYC-2016-1938 funded by MCIN/AEI /10.13039/501100011033 and ESF “Investing in your future”, and a Marie Curie WHRI-ACADEMY International grant (number 608765) to IP-M and a CNIO-Friends predoctoral Carmen Gloria Bonnet Fellowship to MAS.N
    corecore