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Abstract

The rearranged during transfection (RET) proto-oncogene was recognized as the 

multiple endocrine neoplasia type 2 (MEN2) causing gene in 1993. Since then, much 

effort has been put into a clear understanding of its oncogenic signaling, its biochemical 

function and ways to block its aberrant activation in MEN2 and related cancers. Several 

small molecules have been designed, developed or redirected as RET inhibitors for the 

treatment of MEN2 and sporadic MTC. However, current drugs are mostly active against 

several other kinases, as they were not originally developed for RET. This limits efficacy 

and poses safety issues. Therefore, there is still much to do to improve targeted MEN2 

treatments. New, more potent and selective molecules, or combinatorial strategies may 

lead to more effective therapies in the near future. Here, we review the rationale for RET 

targeting in MEN2, the use of currently available drugs and novel preclinical and clinical 

RET inhibitor candidates.

MEN2: introduction

Mary (fictitious name) is a beautiful and joyful eighteen-
year-old girl who enjoys her life. You do not notice 
anything wrong with her, if not for her slightly too long 
and slender fingers and limbs. She has multiple endocrine 
neoplasia type 2 (MEN2) and a marfanoid appearance. 
However, in a sense, she is lucky: the cause of her disease 
had been discovered few years before her birth. Now, she is 
under treatment with a drug that keeps the disease at bay.

MEN2 is a group of hereditary, autosomal dominant 
syndromes characterized by the occurrence of various 
endocrine tumors (Schimke 1984). Three MEN2 clinical 
subtypes are recognized: MEN2A, MEN2B and familial 
MTC (FMTC). MEN2A patients develop medullary thyroid 
carcinoma (MTC), pheochromocytoma and parathyroid 
hyperplasia or adenoma. In contrast, MEN2B patients 
do not have parathyroid involvement, but often show 
a number of additional conditions, such as marfanoid 

features and mucosal neuromas of the lips and the 
tongue and gastrointestinal manifestations (Marx 2005, 
Wells  et  al. 2013). Moreover, MEN2B is generally more 
aggressive and occurs earlier in life. FMTC patients only 
develop MTC; thus, some authors view FMTC as a MEN2A 
variant without adrenal gland involvement. Clinical 
management of MEN2 patients includes prophylactic 
thyroidectomy, periodical biochemical screening for 
urine catecholamine and epinephrine, as well as serum 
calcium, calcitonin and parathyroid hormone levels 
and surgical removal of tumors. The etiology of MEN2 
syndrome remained obscure until 1993, when Mulligan 
and coworkers discovered germline mutations of the 
RET proto-oncogene in MEN2A patients (Mulligan et al. 
1993). RET is a signaling co-receptor for neurotrophic 
factors (Edery  et  al. 1997). At that time, it was known 
to be frequently rearranged in papillary thyroid cancers 
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(PTC), but its involvement in MEN2 and MTC was not yet 
clear (Grieco et al. 1990, Santoro et al. 1990). The paper 
by Mulligan and colleagues opened a new era for specific 
treatment of these conditions. MEN2A patients carry 
cysteine-specific mutations in the extracellular domain 
of RET, that are involved in conformational stability 
and kinase activity via intramolecular disulfide bridges. 
These mutations cause covalent dimerization of RET 
leading to ligand-independent kinase activation (Plaza-
Menacho et al. 2006, Mologni 2011, Goodman et al. 2014). 
Mutations affecting cysteine 634 account for most cases, 
with C634W being the most prevalent MEN2A mutation, 
although other cysteines from the cysteine-rich domain 
(CRD) have been described (Ito et al. 1997). In contrast, 
the vast majority of MEN2B patients carry a M918T 
mutation in the catalytic domain of RET. Methionine 
918 is located near the kinase activation loop: mutation 
to threonine causes the opening of the activation loop 
and induces faster autophosphorylation kinetics (Plaza-
Menacho et al. 2014). FMTC can be caused by both extra- 
and intracellular domains mutations, including cysteine 
substitutions at the CRD and kinase domain-activating 
mutations. Of particular interest from a pharmacological 
standpoint are FMTC mutations at the gatekeeper 
valine, V804, which render the kinase refractory to 
inhibition by some inhibitors (Carlomagno  et  al. 2004, 
Mologni et al. 2013).

RET signaling in MEN2

Molecular dissection of disease-driving mechanisms is 
fundamental for the development of precise therapeutics 
able to target the disease causative process while sparing 
normal functions on the organism. Perturbation of RET 
signaling by a series of oncogenic events, i.e. single 
germline/somatic point mutation, gene rearrangement, 
overexpression or transcriptional upregulation, is a 
common hallmark in several human cancers. The 
understanding of the mechanism of action associated 
with these oncogenic RET ‘variants’ is crucial for the 
development of more accurate (i.e., targeted) and 
successful therapeutic strategies to treat patients with 
RET-positive cancers.

Despite clear genotype–phenotype correlations 
observed in the cancer syndrome MEN2, the molecular 
mechanisms linking the different sets of RET mutations 
with their specific clinical subtypes are far from 
understood. Work from the last two and a half decades on 
the genetics and cell signaling of the RET proto-oncogene 
has described two main mechanisms of action for specific 

disease-phenotype-associated RET mutations. First, 
mutations affecting the extracellular cysteine-rich domain 
(CRD) of RET, associated with MEN2A and FMTC, lead to 
covalent dimerization and constitutive activation of the 
receptor (Takahashi et al. 1999). The recent elucidation of 
the structural architecture of RET extracellular domain in 
complex with GDNF-GFRα1 showed a composite ligand-
binding site, with RET wrapping around the co-receptor/
ligand complex (Goodman et al. 2007). A GFRα1-binding 
hotspot contacts the RET cadherin-like domains, while 
the CRD contacts both ligand components and makes 
membrane-proximal homotypic interactions, leading to 
receptor homodimerization and activation. These CRD-
mediated interactions suggest models both for ligand-
induced RET activation and for ligand-independent 
oncogenic dysregulation by MEN2 cysteine mutations 
(Goodman  et  al. 2007). Second, mutations affecting 
the intracellular domain of RET, usually associated with 
FMTC and always with the MEN2B phenotype, transform 
the receptor into a monomeric ligand-independent 
oncoprotein (Santoro et al. 1995). RET MEN2B variants, 
in particular RET M918T, show not only an altered 
catalytic activity but also an altered substrate specificity 
because they preferentially phosphorylate substrates 
that, contrary to wild-type RET, are usually preferred by 
cytoplasmic tyrosine kinases such us FAK (Murakami et al. 
1999) and SRC (Kato et al. 2002, Encinas et al. 2004, Plaza-
Menacho  et  al. 2011). The transcription factor STAT3 
is one such example (Yuan  et  al. 2004). In addition,  
RET-MEN2B mutants seem to lack dependency on 
activation loop Y905 for both cells transformation and 
signaling (Iwashita  et  al. 1996, 1999). One plausible 
explanation about the molecular basis of the disease 
spectrum is that a different pattern of receptor 
autophosphorylation displayed by specific RET mutants 
connects a different set of phospho-tyrosine-mediated 
downstream signaling pathways and transcriptional 
programs with specific clinical phenotypes. Recent 
biochemical, biophysical and structural evaluation of 
RET M918T and V804M mutants (both targeting the 
catalytic domain of RET) revealed increased kinetics of 
autophosphorylation and a more extended activation 
loop conformation, giving rise to a better intermolecular 
substrate compared to RET WT (Plaza-Menacho  et  al. 
2014). These data have important implications due to the 
perturbation of the temporal assembly and specificity of 
RET signaling complexes. Another interesting observation 
is that oncogenic RET seems to be heavily internalized 
and prolonged treatment with specific tyrosine kinase 
inhibitors (e.g. sorafenib) induced lysosomal degradation  
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(Plaza-Menacho  et  al.  2007). Interestingly, degradation 
promoted by tyrosine kinase inhibitor (TKI) was 
apparently higher for RET C634R (MEN2A) than RET 
M918T (MEN2B). However, blocking HSP90 activity by 
17-AAG induced an equally potent degradation of wild-
type RET and MEN2-associated RET mutants (Alfano et al. 
2010). Altogether these studies highlight the complexity 
of RET (oncogenic) signaling, in a way that localization 
of the receptor in specific subcellular compartments, 
maturation status and the interaction with intracellular 
and extracellular components are important elements to 
understand RET function and oncogenic deregulation.

The rationale of a different temporal pattern of 
receptor activation with specific clinical phenotypes (Plaza-
Menacho et al. 2006) has been supported by several studies. 
In cell-based experiments, RET M918T (MEN2B) triggers 
elevated levels of PI3K activity (Murakami et al. 1999) and 
Jun N-terminal kinase activity JNK (Murakami et al. 2002) 
compared with RET C634R. In addition, RET M918T 
switches the specificity of the RET tyrosine kinase toward 
alternatives substrates that interact with Crk and Nck 
(Bocciardi et al. 1997). The same applies to the interaction 
with other SH2- or PTB-containing docking/adaptor 
proteins. For example, RET M918T (MEN2B) showed both 
enhanced phosphorylation of Y1062 and association 
with SHC, compared with RET C634R (MEN2A) mutants, 
resulting in the higher activation of the RAS/ERK1/2 and 
the PI3K/AKT signaling pathways (Salvatore et al. 2001). 
Liu and colleagues showed that RET-MEN2B mutants lack 
phosphorylation at Y1096, directly leading to a decrease 
in binding of GRB2 to RET, compared with wild-type RET 
(Liu et al. 1996). Transactivation of STAT3 by RET C634R 
(MEN2A) is required for cellular transformation in a process 
that is independent of non-receptor tyrosine kinases 
JAKs and SRC (Schuringa  et  al. 2001). On the contrary, 
activating point mutations targeting the kinase domain, 
such as RET Y791F and RET S891A (FMTC) implicate 
JAKs and SRC kinases in the constitutive activation of 
STAT3 (Plaza Menacho  et  al. 2005). In another study, 
oncogenic RET M918T (MEN2B) was shown to interact 
with and activated STAT3 more strongly than RET C634R 
(MEN2A) (Yuan et al. 2004). In the same line, oncogenic 
RET enhanced in cells the phosphorylation levels of FAK 
activation loop Y576/577 phosphorylation compared to 
wild-type RET, and kinase domain mutants (RET M918T-
MEN2B and RET V804M, a FMTC-associated drug-resistant 
mutant) induced a more robust phosphorylation than 
mutants targeting the extracellular domain (e.g., RET 
C634R, MEN2A). Interestingly, this pattern was mirrored 
by levels of SRC Y416 kinase activation promoted by RET, 

indicating a close relationship between levels of RET, FAK, 
SRC and STAT3 activation (Plaza-Menacho et al. 2011).

Taken all together, these studies indicate that specific 
sets of signaling pathways are connected with specific sets 
of MEN2-associated RET mutations. A better understanding 
of the molecular mechanisms underlying this cancer 
syndrome ultimately will be necessary to design new 
therapeutic strategies to treat this disease. Combinatorial 
therapies targeting RET and other important (disease-
specific) downstream effectors may be a real alternative to 
mono-therapies based on TKIs targeting (oncogenic) RET 
catalytic activity (see below).

Targeted treatments for MEN2/MTC

Approved drugs

The spectacular success of imatinib in chronic myeloid 
leukemia (CML) patients in early 2000s (Kantarjian et al. 
2002) indicated that targeted treatment may change a 
disease history in rationally selected patients. Belonging 
to the same protein class as the imatinib target ABL1, RET 
was the next kid on the block. A list of completed and 
ongoing clinical trials investigating the efficacy of RET 
inhibitors in familial thyroid cancer is shown in Table 1.

Vandetanib (Caprelsa, ZD6474, Genzyme Corp), an 
orally available kinase inhibitor active against VEGFR2 
and EGFR, was later found to be also a potent RET 
inhibitor (Carlomagno  et  al. 2002, Wedge  et  al. 2002, 
Vidal  et al. 2005). The efficacy and safety of vandetanib 
in patients with MTC were first evaluated in two phase 
II studies (Robinson et al. 2010, Wells et al. 2010). In the 
trial conducted by Robinson and colleagues, vandetanib 
administered 100 mg/daily which resulted in a partial 
response (PR) in 16% of the patients and in stable disease 
(SD) for at least 24  weeks in 53% of the treated cases. 
Wells and colleagues described the use of 300 mg/daily 
as able to induce a PR in 20% of patients and a SD in 
53%, with a median progression-free survival (PFS) of 
27.9  months. A large multicenter, randomized placebo-
controlled crossover phase III study was conducted in a 
cohort of 331 patients with hereditary and sporadic forms 
of MTC (ZETA trial, Wells et al. 2012). The patients were 
randomly divided 2:1 between vandetanib (300 mg/daily, 
n = 231) or placebo (n = 100) arms. The predicted median 
PFS for the vandetanib arm was 30.5 months, significantly 
higher than the 19.3 months observed for placebo. A PR 
was observed in 45% patients with a predicted median 
duration of 22  months, while 42% had SD, yielding a 
disease control rate of 87%. The analysis showed evidence 
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that RET mutation-positive patients had higher benefit 
than RET-negative ones, although the trend did not 
reach statistical significance due to the limited number 
of patients in the latter group. Adverse events (AEs) were 
observed in more than 30% of patients and included 
diarrhea, nausea, rash and hypertension. About half 
(49%) of the patients had a vandetanib-related increase of 
TSH levels and 8% of cases developed QTc prolongation. 
Five patients died because of serious side effects. Based on 
these results, the FDA (in 2011) and the EMA (in 2012) 
approved the use of vandetanib for the treatment of 
symptomatic or progressive medullary thyroid cancer in 
patients with unresectable locally advanced or metastatic 
disease. More recently, a phase I/II study aimed to assess 
the drug’s safety, tolerance, pharmacokinetic as well as 

the antitumor activity in a cohort of 10 adolescents and 
6 children affected by MEN2B-associated MTC (Fox et al. 
2013). All the patients but one expressed the M918T RET 
mutation. The tumor size decreased in all the 15 patients 
carrying the mutation. The overall objective response rate 
was 44% (7/15 patients; 95% confidence interval (CI): 
21–73%) with a decrease in calcitonin level of 59% after 
one cycle of therapy. However, three children experienced 
progression after an initial PR.

An alternative to vandetanib is currently represented 
by cabozantinib (Cometriq, XL-184, Exelixis Inc), a 
potent inhibitor of MET, VEGFR2/KDR, RET, as well as 
other receptor tyrosine kinases, such as KIT, AXL and 
FLT3. In in vitro biochemical assays, cabozantinib displays 
inhibitory activity against both wild-type and mutated 

Table 1  Clinical trials investigating RET inhibitors in medullary thyroid cancer patients.

Phase Drug Dose# Condition Outcome* Reference/ID

II Vandetanib 100 mg/day FMTC 16% PR, 53% SD (39)
II Vandetanib 300 mg/day FMTC 20% PR, 53% SD (40)
III Vandetanib 300 mg/day MTC 45% PR, 42% SD (41)
I/II Vandetanib 150 mg/m2/day MEN2B 44% ORR (42)
I Cabozantinib Dose finding MTC 29% PR, 41% SD (45)
III Cabozantinib 140 mg/day MTC 28% PR (46)
II Sorafenib 400 mg bid MTC 6% PR, 88% SD (51)
II Sorafenib 400 mg bid MTC/DTC 25% PR, 70% SD (52)
II Lenvatinib 24 mg/day MTC 36% PR (57)
II Sunitinib 37.5 mg/day MTC/DTC 50% PR (61)
II Sunitinib 50 mg/day MTC/DTC/ATC 38% PR, 50% SD (62)
II Motesanib 125 mg/day MTC 2% PR, 81% SD (74)
II Fostamatinib 200 mg bid Multi-histology 50% SD (79)
I/II Alectinib Bid, dose finding RET-mutated thyroid cancer n.d. NCT03131206
I LOXO-292 Dose finding MTC n.d. NCT03157128
II Ponatinib 30 mg/day MTC, previously treated 

with vandetanib or 
cabozantinib

100% PD halted 
for toxicity

NCT01838642

II Ponatinib n.a. RET-mutated cancer n.d. NCT02272998
II Apatinib 500 mg/day Thyroid cancer n.d. NCT03199677
II Nintedanib 200 mg bid MTC/DTC n.d. NCT01788982
I Dovitinib + paclitaxel 200 mg/day Multi-histology 100% SD (RETmut 

non-MTC)
(94)

II Pazopanib 800 mg/day MTC 14% PR (98)
I-Ib RXDX-105 20–350 mg/day BRAF- or RET-mutated 

cancer
1 PR NCT01877811; (99)

I BLU-667 Dose finding MTC/other RET-mutated 
cancer

n.d. NCT03037385

I GSK3352589 1–100 mg/day Healthy subjects n.d. NCT03154086
I GSK3179106 10–200 mg/day Healthy subjects n.d. NCT02798991 
I GSK3179106 5–100 mg/day Healthy subjects n.d. NCT02727283
I/II Vandetanib + bortezomib Up to 300 mg qd MTC 29% PR NCT00923247
Ib Semaxanib + paclitaxel 110 mg/m2 on days 1, 15, 

18, 22 and 25
Head and neck 100% SD (141)

I Vandetanib + everolimus Starting 100 mg/day Advanced cancers n.d. NCT01582191

#In combination studies, the data refer to the RET inhibitor; *refers to the MTC population only, when the study involved other cancer types (unless 
specified).
ATC, anaplastic thyroid carcinoma; bid, bis in die (twice daily); DTC, differentiated thyroid carcinoma; MTC, medullary thyroid carcinoma; ORR, overall 
response rate; PD, progressive disease; PR, partial response; SD, stable disease.
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M918T and Y791F RET forms associated with MTC 
(Yakes  et  al. 2011, Bentzien  et  al. 2013). Cabozantinib 
received FDA approval in 2012 and EMA approval in 
2014 for the treatment of patients with progressive 
metastatic MTC. The activity of cabozantinib was firstly 
assessed in a phase I study on 87 patients with different 
solid tumors, including 37 MTC patients (Kurzrock et al. 
2010). In the MTC subgroup 29% of cases achieved a PR 
and 41% had a SD for at least 6 months. The subsequent 
multicenter, randomized, placebo-controlled phase III 
EXAM study (Elisei  et  al. 2012) involved 330 patients 
with histologically confirmed unresectable, locally 
advanced or metastatic MTC that were randomly assigned 
2:1 either to cabozantinib (140 mg/daily) or to placebo. 
Forty-eight percent patients harbored RET mutations. The 
PFS observed for the cabozantinib arm was significantly 
longer than placebo (11 vs 4 months, hazard ratio (HR) 
0.28). PR was achieved in 28% of patients with a median 
duration of response of 14.7 months, while the median 
overall survival (OS) did not significantly differ in the 
two arms: 26.6 months under cabozantinib and 21.1 in 
the placebo group (P = 0.24). In the subgroups harboring 
RET mutation, a PR was observed in 34% of cases, PFS was 
13.9 months and the OS was 44.3 months (vs 18.9 months 
in the placebo arm, P = 0.025). The most frequent AEs of 
grade 3 and 4 were diarrhea, hand-foot syndrome, fatigue 
and hypertension.

Investigational drugs

Several small molecules have been designed, developed 
or repurposed as RET kinase inhibitors during the past 
decade (reviewed in Phay & Shah 2010, Mologni 2011, 
Borrello  et  al. 2013, Mologni  et  al. 2017a,b). Some have 
already been approved for non-MEN2 thyroid cancer and 
are under investigation for MEN2, others are in advanced 
clinical development or have been clinically tested in a 
limited number of patients.

Sorafenib (Nexavar, Bay 43-9006, Bayer Healthcare 
Pharmaceuticals Inc) is an orally available VEGFR1–3, 
RET, BRAF and PDGFR inhibitor. Its use in differentiated 
thyroid carcinoma (DTC) has been approved by the FDA 
and the EMA in 2013 and 2014, respectively (Brose et al. 
2014). Sorafenib activity in MTC was assessed in two 
prospective phase II studies (Lam et al. 2010, Ahmed et al. 
2011). Lam and colleagues enrolled 21 MTC patients 
observing a PR in 6% of cases and SD in 88%. The PFS was 
17.9 months. Similarly, Ahmed and colleagues studied a 
cohort of 15 MTC: 25% of cases achieved a PR, and the 
authors reported 100% OS at 12 months. Adverse events 

observed upon treatment with sorafenib in MTC patients, 
as well as in other thyroid cancer types include hand-foot 
syndrome, diarrhea, skin rash and fatigue. Larger cohorts 
will have to be evaluated before drawing conclusions on 
the efficacy of sorafenib in these patients.

Lenvatinib (Lenvima, E7080, Eisai Co Ltd) is an 
orally available multi-targeted TKI with reported activity 
against VEGFR 1–3, FGFR 1–4, PDGFR alpha, RET and KIT 
(Matsui et al. 2008, Bruheim et al. 2011, Wiegering et al. 
2014). Lenvatinib has been approved by the EMA and the 
FDA for the treatment of patients with progressive radio-
iodine-refractory DTC recurrent or metastatic (Nair et al. 
2015). The use of lenvatinib in MTC has been explored 
by Schlumberger and colleagues in a multicenter phase 
II study involving 59 patients treated with 24 mg/day in 
28-day cycles (Schlumberger  et  al. 2016). The primary 
endpoint of the study was ORR, which was 36% (all PRs). 
Patients with or without prior VEGFR-targeted treatment 
responded similarly (35% vs 36% RR, respectively). 
Median PFS was 9 months and the achieved response was 
not affected by the RET mutational status.

Among the most advanced investigational 
compounds, sunitinib (Sutent, SU11248; Pfizer Ltd) 
has completed phase I and II trials in thyroid cancer 
(Dawson et al. 2008, Carr et al. 2010, Atallah et al. 2016, 
Bikas  et  al. 2016, Ravaud  et  al. 2017) and is currently 
undergoing specific evaluation in RET fusion-positive 
tumors (NCT02450123). Sunitinib was part of a large 
indolinone compound collection at SUGEN Inc (later 
acquired by Pfizer), which was initially developed to block 
angiogenic kinases belonging to the split tyrosine kinase 
domain family (VEGFR, FGFR, PDGFR) (Sun  et al. 1998, 
1999, 2000). Later, a few closely related compounds from 
this series were shown to inhibit RET at submicromolar 
concentrations in vitro and in vivo (Kim  et  al. 2006, 
Mologni et al. 2006, Chow & Eckhardt 2007, Jeong et al. 
2011). Among these, SU11248 showed the best 
pharmacologic properties and progressed into clinical 
trials. Thus, although the published anti-RET preclinical 
data are scarce, and despite the broad multikinase activity 
of sunitinib, its safety profile is already well established 
from previous trials for other targets (it is approved for 
renal-cell carcinoma and imatinib-refractory GIST). This 
prompted clinical investigation in thyroid cancer patients. 
Overall, Sutent achieved 20–40% objective responses 
and 70–80% disease control rate (including SD) in the 
thyroid cancer patients' population, which is in line with 
the currently approved drugs. Sunitinib was generally 
well tolerated in these patients, with mostly grade 1 or 
2 treatment-related adverse events. The most frequent 
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toxicities observed in the different studies were fatigue, 
hand-foot syndrome, leukopenia and diarrhea, in some 
cases reaching grade 3–4 severity and leading to treatment 
discontinuation (about 10%) or dose reduction from the 
recommended 37.5 to 25 mg/die. One report described 
cardiac events in 14% of patients, half of whom had a 
severe episode (Ravaud  et  al. 2017). None of the other 
studies in thyroid cancer patients reported cardiovascular 
events; however, sunitinib had been watched for 
cardiovascular risk in patients with renal-cell carcinoma 
and gastrointestinal stromal tumors (Chu  et  al. 2007). 
A KIF5B-RET-positive non-small-cell lung cancer (NSCLC) 
case was reported with rapid response to sunitinib and 
clinical improvement after three days of treatment, in a 
heavily compromised patient (Wu et al. 2015). However, 
treatment was discontinued after 10  weeks for toxicity. 
Unfortunately, significant toxic effects seem relatively 
common among patients treated with sunitinib, which 
likely reflects its lack of selectivity. This may limit its 
clinical efficacy.

Motesanib (AMG-706, Amgen/Takeda) was originally 
developed by Amgen as an anti-angiogenic drug targeting 
VEGFR and c-Kit (Polverino et al. 2006). Activity was also 
noted in vitro against RET kinase in the nanomolar range, 
although with 1-log reduced potency compared to the 
primary targets. Thus, RET was a clinically interesting off 
target for motesanib. The compound was highly selective 
vs a number of other kinases. This may be due to its 
ability to make contact with small gatekeeper residues, 
which RET (V804), VEGFR (V916) and c-Kit (T670) have 
in common. On the other hand, this is a vulnerability, as 
motesanib is totally inactive against gatekeeper mutants, 
such as RET V804M (Mologni  et  al. 2013). In further 
preclinical studies, motesanib inhibited wildtype but 
not mutant RET C634W and M918T phosphorylation 
in cells. Consequently, proliferation of cells driven by 
mutant RET was not affected. However, in animal models, 
motesanib showed antitumor activity against xenografts 
carrying a M918T mutant RET (Coxon  et al. 2012). This 
apparent contradiction is probably explained by anti-
angiogenic effects of the drug. Clinical development 
of motesanib was later taken up by Takeda. In phase II 
studies, the drug showed modest activity in MTC (2% PR, 
81% SD) as well as in DTC (14% PR, 67% SD) patients 
(Sherman et al. 2008, Schlumberger et al. 2009). Moreover, 
pharmacokinetic analyses indicated that motesanib trough 
concentrations were lower in MTC compared to DTC 
patients. The vast majority of patients (88%) experienced 
AEs, with a significant proportion (38%) of grade 3 AEs 
(Schlumberger et al. 2009). Currently, motesanib is mostly 

undergoing clinical evaluation as a VEGFR, PDGFR and 
c-Kit inhibitor (Raghav & Blumenschein 2011).

Fostamatinib is a multikinase inhibitor prodrug 
currently investigated as a SYK inhibitor (Bajpai 2009). 
Also in this case, the compound was inadvertently found 
to block RET kinase activity (Clemens et al. 2009). A recent 
multi-histology trial evaluated four thyroid cancer patients 
(papillary and follicular type), two of whom achieved 
SD as their best response (Park  et al. 2013). In addition, 
one of the two patients with pheochromocytoma had 
durable SD. Although no MTC patient was enrolled, these 
data may encourage investigation of fostamatinib in 
MEN2 patients.

Alectinib (Alecensa, CH5424802, Roche/Chugai) is an 
anaplastic lymphoma kinase (ALK) inhibitor, approved for 
the treatment of advanced NSCLC refractory to crizotinib 
(Gadgeel et al. 2014). It was subsequently shown to be an 
effective RET inhibitor in vitro and in vivo (Kodama et al. 
2014). Although alectinib is not quite as potent against 
RET as it is against ALK, the compound is active on most 
RET mutants tested and shows very good selectivity for 
RET vs VEGFR, which may be a competitive advantage 
over competing drugs. Alectinib will soon be tested 
in RET-rearranged NSCLC and RET-mutated thyroid 
cancer patients, in a non-randomized phase I/II study at 
Dana-Farber Cancer Institute (NCT03131206). A recent 
study reported objective responses in two of four RET-
rearranged NSCLC patients (Lin  et  al. 2016a,b). From a 
clinical standpoint, alectinib has the advantage of already 
being well characterized. Whether it will show the same 
spectacular efficacy in RET-positive tumors as observed in 
ALK-driven disease remains to be ascertained.

Loxo Oncology recently developed a selective RET 
inhibitor named LOXO-292 with >100× selectivity vs  
KDR/VEGFR2, which compares favorably with 
cabozantinib and vandetanib on both wild-type and 
mutant RET (Brandhuber  et  al. 2016). The molecule 
shows good oral bioavailability and pharmacokinetics 
(PK) in animals, as well as high efficacy in RET-dependent 
tumor models, including xenografts and patient-derived 
tumor grafts. A multicenter phase I trial in patients 
with advanced RET fusion-positive NSCLC and MTC 
is currently recruiting participants (NCT03157128), to 
define the maximum tolerated dose (MTD).

Ponatinib (Iclusig, AP-24534, Ariad Pharmaceuticals) 
was developed to circumvent the highly intractable ABL 
gatekeeper mutant T315I in Philadelphia-positive chronic 
myeloid leukemia (Zhou et al. 2011, Cortes et al. 2012). It 
has been approved for the treatment of adult patients with 
T315I-positive CML and ALL or patients that have failed 

https://doi.org/10.1530/ERC-17-0297


http://erc.endocrinology-journals.org� © 2018 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.https://doi.org/10.1530/ERC-17-0297

T59S Redaelli et al. New treatments for MEN2 25:2Endocrine-Related 
Cancer

all other TKIs. Most like the V804M/L mutants of RET, 
substitution of a bulky isoleucine for wild-type threonine 
in ABL kinase renders the drug-binding site unfit to 
accommodate imatinib as well as second-generation ABL 
inhibitors (Quintas-Cardama & Cortes 2008). Through 
an innovative design, ponatinib was specifically made to 
overcome the steric impediment provided by the mutant 
residue, thus making this drug highly active against 
gatekeeper mutants. Indeed, when ponatinib was shown 
to potently inhibit RET (De Falco et al. 2013, Mologni et al. 
2013), V804M/L mutants were shown to be effectively 
blocked. At the time of writing this manuscript, a phase II 
trial in advanced MTC previously treated with vandetanib 
and cabozantinib has been terminated prematurely 
(NCT01838642), and a new study was announced to open 
soon. Only 2 patients could be evaluated in the closed 
trial (both RET mutation positive), with no objective 
response (best response: PD). Other phase II, open-
label trials in advanced NSCLC with RET translocations 
are currently recruiting patients (NCT01813734 and 
NCT01935336). Primary outcome will be overall response 
rate at 2 and 5  years, respectively. A new basket trial is 
recruiting patients with any refractory metastatic tumor 
carrying alterations in ponatinib targets, including RET 
(NCT02272998). As ponatinib is affected by significant 
systemic toxicity, which led to early termination of the 
first trial, its use may be confined to second or third lines 
of TKI therapy. Alternatively, dose reduction might be 
explored (Pinilla-Ibarz et al. 2013).

Apatinib is a potent VEGFR-2 inhibitor, which also 
targets PDGFR-β, c-Src, c-Kit and RET (Scott  et al. 2015). 
Recently, it was shown to block invasion by RET fusion-
positive lung cancer cells in vitro (Lin  et  al. 2016a,b). 
Since apatinib was already in advanced clinical phases of 
development (Li et al. 2016) as an anti-angiogenic drug, it 
is now under evaluation in metastatic refractory thyroid 
cancer, including MTC (NCT03199677) as well as in RET-
positive NSCLC (NCT02540824).

Nintedanib (Vargatef, Ofev, BIBF 1120, Boehringer 
Ingelheim) is an anti-angiogenic multikinase inhibitor 
targeting VEGFRs, PDGFRs and FGFRs (Capdevila  et  al. 
2014) used to treat idiopathic pulmonary fibrosis and 
lung cancer. In a recent retrospective analysis, the drug 
was reported to have achieved one complete response 
(CR) and one SD in two RET-rearranged NSCLC patients 
(Gautschi et al. 2017). Interestingly, according to the same 
study, ponatinib obtained only stabilization in two treated 
patients, while alectinib (n = 2) failed. However, numbers 
are too small to draw any conclusions. Cabozantinib, 
vandetanib and sunitinib, for which at least 10 patients 

were evaluable, achieved 37, 18 and 22% overall 
responses, respectively (Gautschi et al. 2017), in line with 
observations in thyroid cancer. No data are available for 
the use of nintedanib in MEN2 or MTC, yet. However, a 
new phase II study is ongoing in MTC or DTC patients 
progressing after first-line therapy (NCT01788982).

Dovitinib (TKI258, CHIR258, Novartis) is another 
multi-targeted angiokinase inhibitor with anti-RET 
activity. It was investigated in a series of patients with 
various cancers (not MTC) and found to have sustained 
antitumor activity in two patients carrying a RETG691S 
germline variant (Quintela-Fandino  et  al. 2014). 
Interestingly, the same variant had previously been found 
in early-onset MEN2A patients and considered as a genetic 
modifier, cooperating with known oncogenic mutations 
to confer high penetrance an activating, oncogenic 
mutation (Robledo et al. 2003).

Pazopanib (Votrient, GW786034B, GlaxoSmithKline) 
is a VEGFR1/2/3, PDGFRα/β, and c-Kit inhibitor used 
for the treatment of renal-cell carcinoma (Sonpavde & 
Hutson 2007). It was tested in thyroid cancer patients on 
the basis of its anti-angiogenic properties, first in DTC 
(Bible et al. 2010) then in MTC (Bible et al. 2014). While 
in DTC patients the authors recorded 49% confirmed 
PRs, the results in MTC were less encouraging, with 
only 5/35 (14%) responding patients. One-third of 
patients had severe adverse events requiring treatment or 
dose reduction.

Ignyta Inc is currently evaluating RXDX-105 (formerly 
CEP-32496) in a phase I clinical trial (NCT01877811) in 
patients with advanced solid tumors with RET or BRAF 
mutations or rearrangements (Patel et al. 2016). Although 
the trial is mostly intended for lung cancer patients, 
thyroid cancer patients are eligible to be enrolled as well. 
The compound was actually described as a poorly selective 
BRAF inhibitor, with potent off-target activity against RET 
and other kinases (James et al. 2012). Recently, its anti-RET 
activity was characterized in more detail in vitro and in vivo 
(Li et al. 2017). The same paper also reports a rapid PR in 
a NSCLC patient within the ongoing NCT01877811 trial. 
However, dose reduction was necessary due to toxicity. 
Indeed, broad inhibitory activity across the kinome of this 
compound may limit its efficacy in patients.

Next generation of RET targeted drugs

A new wave of RET-specific compounds is coming up in 
the next few years. By looking at recently filed patent 
applications, we get the feeling that the RET inhibitor 
field is about to burst. Likely, the new interest in RET 
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kinase inhibition has been fostered by the discovery of 
driver RET mutations in NSCLC and colorectal carcinoma. 
Although representing a minority of total lung and 
colon cancer patients (2% and 0.2%, respectively), RET 
fusion-positive cases are still a numerically important 
population of individuals (estimated 50,000 new cases per 
year worldwide), which adds up to the number of RET-
positive thyroid cancer patients (about 100,000 per year). 
Moreover, the dismal prognosis of lung and colon cancers 
make new targeted treatments very attractive. In contrast, 
the great majority of thyroid cancers (papillary and 
follicular types) are characterized by high cure rates, while 
MTC is a rare disease. With cancer genome sequencing 
approaching routine use, it is probable that more RET-
positive cancer types will be detected in the near future. 
Hence, RET has entered the stage of ‘interesting’ molecular 
targets in oncology. This has spurred a race toward RET-
specific drug design programs, from which MEN2 patients 
will definitely benefit. Here we give a brief overview of 
forthcoming compounds, as of fall 2017.

Among new anti-RET drugs, BLU-667 of Blueprint 
Medicines has just started clinical phase I trial in 2017 
(NCT03037385). It is claimed to be a potent and selective 
inhibitor of RET mutations and fusions, including drug-
resistant mutants. The candidate was selected from a 
series of pyridinyl-pyrimidine derivatives, some of which 
showed low nanomolar activity against the gatekeeper 
V804L mutant in preclinical in vitro studies (Fleming et al. 
2016, Rahal et al. 2016, 2017). The trial will evaluate safety 
and tolerability of BLU-667 in patients with RET-positive 
NSCLC and MTC.

GlaxoSmithKline developed two series of compounds 
specifically designed to inhibit RET kinase in the nanomolar 
range (Eidam  et  al. 2014, Cheung  et  al. 2016). Their 
clinical candidates (GSK3352589 and GSK3179106) have 
recently started phase I, first-in-human, dose escalating 
controlled studies to evaluate the safety, tolerability 
and pharmacokinetics in normal healthy volunteers 
(NCT03154086, NCT02798991 and NCT02727283). 
Although GSK seems to be developing these compounds 
for the treatment of irritable bowel syndrome (IBS), they 
may be as well effective for MEN2 and other RET-driven 
cancers (Abdel-Magid 2015).

Another interesting family of potential RET inhibitors 
is represented by quinazoline compounds described 
by Cancer Research Technology (Goldberg  et  al. 2015, 
Newton  et  al. 2016). Structurally related to vandetanib, 
these compounds are shown to possess striking selectivity 
(>100×) over VEGFR2/KDR kinase, which is a very common 
co-target of several RET inhibitors, whose inadvertent 

inhibition may potentially cause unwanted side effects 
and confounding anti-angiogenic activity. Therefore, 
these molecules may have improved therapeutic index 
compared to current drugs. The key to increased selectivity 
compared to vandetanib was a change in substituents 
around the phenyl ring, which also led to improved 
metabolic and pharmacokinetic features (Newton  et  al. 
2016). This family was further elaborated in a more recent 
work, where the authors identified compounds with 
improved cellular selectivity (Jordan et al. 2016).

Similarly, a very recent patent filed by Array Biopharma 
claims potent nanomolar RET inhibitors with great 
selectivity (>30×) vs KDR kinase (Andrews et al. 2017). The 
inventors also propose the use of combinations including 
their lead compounds and at least one additional agent, to 
be chosen among known effective drugs for the treatment 
of cancer and IBS.

Nerviano Medical Sciences (NMS) has launched an 
ambitious program for the discovery of RET-selective 
inhibitors (Angiolini  et  al. 2014, Menichincheri  et  al. 
2014). Two families of compounds were developed 
following a common concept of gatekeeper by-pass, 
shared with ponatinib (see above). In a first series, a 
triple bond linkage extends from a purine-based core 
scaffold buried in the active site through binding to the 
hinge region, bypassing the narrow space around a bulky 
gatekeeper such as V804M/L mutants of RET. Another 
recent patent filed by NMS describes compounds with 
low nanomolar activity and remarkable selectivity for 
RET+ cells in vitro. Again, the compounds are built by a 
similar design, with an extended linker joining two parts 
of the molecule, which are likely to fit nicely into the ATP 
pocket of the kinase even in the presence of large residues 
at the 804 position. The best compounds from this series 
are claimed to possess picomolar activity against MTC 
cells and are currently under preclinical development, 
with promising activity in RET-driven animal models 
(Ardini et al. 2017).

Dar and colleagues (University of California/Mount 
Sinai School of Medicine) recently described the discovery 
of potent RET inhibitors showing a high therapeutic 
window (Dar  et  al. 2012). Instead of using a classical 
biochemical screening based on the kinase activity, the 
authors exploited a Drosophila in vivo MEN2B model 
coupled with genetic and chemical profiling, toward a 
high-throughput simultaneous readout of target (RET) 
and anti-target inhibition. This strategy allowed the 
identification of hit compounds (AD80 and AD81) with 
the desired activity and devoid of unwanted toxicity. The 
findings translated into improved in vivo efficacy and 
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tolerability in a mouse xenograft model. Whether this will 
also hold in humans remains to be demonstrated.

NVP-AST487 is a Flt-3, VEGFR, PDGFR, c-Kit and c-Abl 
inhibitor with nanomolar activity against RET C634W-
transformed NIH3T3 xenografts (Akeno-Stuart et al. 2007) 
and in MEN2-derived human cell lines (Gild et al. 2013). 
It has recently been used to target GDNF-stimulated wild-
type RET receptor in MCF7 breast cancer cells, where a role 
for RET activation in resistance to aromatase inhibitors 
has been demonstrated (Andreucci et al. 2016).

Pz-1 is a very potent compound described by Synactix 
Pharmaceuticals (Frett  et  al. 2015), which was able to 
completely suppress RET-driven tumor growth in mice 
at 1 mg/kg. However, the compound also greatly reduced 
Ras-induced tumors, which raises doubts on its selectivity 
and therapeutic applicability. Also, strong VEGFR2 
inhibition, as said, may help antitumor activity or cause 
adverse effects.

To conclude this section, it is worth mentioning 
that several academic groups, including our lab, have 
published interesting early phase medicinal chemistry 
papers describing the discovery of novel RET inhibitors 
with promising in vitro data, in the past three years. Often, 
efforts were focused on activity against the gatekeeper 
mutants (Dunna et al. 2015, Ferreira et al. 2015, Moccia et al. 
2015, Han et al. 2016, Song et al. 2016, Yoon et al. 2016, 
2017, Mologni et al. 2017a,b, Wang et al. 2017). Finally, 
in a completely different approach, Kumarasamy and 
Sun described the selective block of RET transcription by 
a G-quadruplex-stabilizing agent (Kumarasamy & Sun 
2017). By hitting the promoter of RET gene, this strategy 
would result in suppression of all mutants, but it would 
not be useful for RET fusions. Similarly, antibody-based 
approaches such as one described by Takeda (Arai  et  al. 
2007) would hit RET mutants expressed on the cell surface, 
but not fusion oncogenes, that are localized within the 
cytoplasm. More universal targeting approaches are 
possible, including antisense, RNAi, or ribozyme-based 
strategies (Parthasarathy et al. 1999, Backman et al. 2003). 
However, all nucleic acid-based therapeutics suffer from 
poor delivery.

Combination therapies

While targeted cancer monotherapy has demonstrated 
good efficacy when rationally designed, the combination 
of two or more agents may further improve the outcome, 
in an additive or synergistic manner, by causing a 
more profound anti-tumoral effect. More importantly, 
combination therapies have the potential of preventing 

drug resistance, which very often arises from the selection 
of pre-existing mutant subclones or from adaptive 
response to treatment (Gorre  et  al. 2001, Doebele  et  al. 
2012, Straussman  et  al. 2012). A few preclinical studies 
have addressed the issue of combined treatment in 
MEN2 disease and/or thyroid neoplasia. Lopergolo and 
colleagues at the National Cancer Institute in Milan, Italy, 
showed that addition of cisplatin synergistically improved 
antitumor activity of sunitinib in MTC xenografts, by 
potentiating the activation of CD95-mediated apoptosis 
(Lopergolo  et  al. 2014). In another interesting study, 
sorafenib was shown to cause only transient MAPK 
pathway inhibition in MTC cell lines at low doses. This led 
the authors to test whether its effects could be enhanced 
by concomitant treatment with a MEK inhibitor. Indeed, 
combination with selumetinib (AZD6244, AstraZeneca) 
greatly increased growth inhibition compared to either 
single agent (Koh  et  al. 2012). While this combination 
has not yet been further investigated in thyroid cancer, 
the addition of MEK/ERK inhibitors to upstream kinase 
inhibitors (e.g., BRAF) has proven very successful in other 
tumors (Robert et al. 2015).

The concept of hitting driver oncogenic pathways at 
multiple nodes was explored by Jin and coworkers (Jin et al. 
2011). The authors initially sought to block MEK/ERK and 
PI3K/AKT/mTOR pathways in DTCs driven by RAS, RAF 
or PTEN mutations. To this end, they combined the dual 
PI3K/mTOR inhibitor NVP-BEZ235 (Novartis) with the 
pan-RAF inhibitor RAF265/CHIR-265 (Novartis), which 
targets VEGFR2 as well. However, they noted that RAF265 
is structurally related to sorafenib; hence, it may also block 
RET kinase. Indeed, the drug was shown to be a potent 
RET inhibitor and cooperated with BEZ235 to inhibit 
TT cells (carrying a RET C634W allele) growth in vivo. It 
is possible that VEGFR2 targeting contributed to in vivo 
tumor growth inhibition, similarly to all other effective 
RET inhibitors. More recently, another group explored 
synergistic inhibition of RET-mediated signaling and cell 
growth by the combination of RAF265 with a different 
PI3K inhibitor, named ZSTK474 (Bertazza  et  al. 2015). 
ERK and AKT activation, cell growth and survival, and 
calcitonin expression and secretion were all significantly 
better inhibited by the combination compared to single 
treatments, in TT cells.

Another possible strategy may involve the use of 
heat shock protein inhibitors. As mentioned earlier, 
pharmacological inhibition of HSP90 by 17-AAG or 
ganetespib downregulates RET levels in cells (Alfano et al. 
2010, Lin et al. 2017) and sorafenib induces a similar effect 
after prolonged treatment (Plaza-Menacho  et  al.  2007). 
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The combination of HSP90 and RET inhibitors may 
lead to improved block of oncogenic signaling in RET-
addicted cells.

A few papers described the use of imatinib (Gleevec, 
STI-571, Novartis) against RET. However, the drug showed 
poor activity in preclinical and clinical studies (Cohen et al. 
2002, de Groot et al. 2007). In one attempt to improve its 
efficacy in MTC models, authors combined imatinib with 
a FGFR4 inhibitor (PD173074, Ezzat et al. 2005). Although 
the drugs concentrations used in vitro were rather high, 
hardly achievable in vivo, the combination did obtain 
better inhibition of TT xenografts, at reasonable doses.

On the clinical side, a phase I/II trial of vandetanib 
plus the proteasome inhibitor bortezomib (Velcade, 
Millennium Pharmaceuticals) was run in adults with 
hereditary or sporadic, locally advanced or metastatic 
MTC. Phase I enrolled 21 patients to find the MTD. 
Analysis of tumor response in this group showed 29% PR 
(6/21), while only one patient was enrolled in the phase 
II and progressed (NCT00923247). A possibly interesting 
activity of semaxanib (SU5416) in combination with 
paclitaxel in two metastatic MTC patients remained 
anecdotal because the compound has then been 
discontinued. The trial was actually designed for head-
and-neck cancers, including thyroid neoplasm, and 
semaxanib was meant as an anti-angiogenic drug. 
Interestingly, the only two MTC patients enrolled were 
among the four patients (out of 11 evaluable) showing 
prolonged SD (Cooney  et  al. 2005). The documented 
anti-RET activity of the compound (Mologni et al. 2006) 
may explain these results. A recent single-arm phase 
1 trial is currently recruiting patients with advanced 
cancers, to be treated with a combination of vandetanib 
plus everolimus, an mTOR inhibitor (NCT01582191). 
The idea is based on everolimus activity against ABC 
transporters, which limit drug efficacy, especially in the 
central nervous system. Indeed, a first successful case 
has been reported (Subbiah et al. 2015). Whether these 
results will be relevant to the MEN2/MTC population 
remains to be seen.

Finally, an innovative precision therapy trial 
(NCT02363647) is inviting patients with sporadic 
metastatic MTC. After next-generation genetic analysis 
to identify tumor drivers, a Drosophila model is rapidly 
generated and tested against a panel of FDA-approved 
drugs or drug combinations, to identify and propose 
a possible personalized treatment. Time will tell if this 
strategy will obtain superior response or cure rates 
compared to current approaches.

Conclusions and future hope

The discovery of RET mutations in MEN2 syndrome 
25  years ago opened a new era for the management of 
the disease. After two decades of intense research, potent 
RET inhibitors have reached the clinical scene, with 
many more to come in the next few years (Mologni et al. 
2017a,b). As physicians know very well, to have a full array 
of drugs to treat cancer is a most desirable situation, when 
we are confronted with an enemy that changes rapidly to 
survive our attacks. However, it is currently unclear what 
are the mechanisms of primary or acquired resistance 
to RET inhibitors in thyroid cancer. This information is 
needed in order to rationally devise effective alternative 
targeted treatments, as demonstrated for CML patients 
(Redaelli  et  al. 2012). Surely, RET gatekeeper mutations 
cause a sharp decrease of efficacy for some drugs in vitro 
(e.g. vandetanib, Carlomagno et al. 2004). A recent work 
reported NRAS mutations in ponatinib-resistant RET-
rearranged NSCLC cells (Nelson-Taylor  et  al. 2017). It 
is also unknown whether sequential targeted therapies 
with multiple RET inhibitors will improve patients OS. 
Finally, all current drugs are anti-angiogenic compounds 
with limited selectivity for RET. Therefore, the relative 
contribution of anti-RET and anti-VEGFR activities in 
determining the clinical outcome is not known, although 
the ZETA trial indicated that RET-positive patients may 
respond better, suggesting a specific anticancer role for 
RET inhibition (Wells et al. 2012).

It has been an exciting time from the discovery of the 
target to the development of targeted treatments. Much 
remains to be done, but we (and Mary) can look forward 
with new optimism.
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