884 research outputs found

    On the need for a global engineering initiative to mitigate climate change

    Full text link
    There is growing scientific evidence that the continued emission of greenhouse gases will eventually lead to catastrophic irreversible climate change and that, therefore, a global effort needs to be started to transition to a fully renewable economy. In this article, the engineering challenges of converting to emission-free power generation are reviewed and the feasibility of two proposed solutions, i.e. the ‘wind–water–solar’ and the ‘energy ship’ proposals, are discussed. It is concluded that a well-conceived and executed engineering effort needs to be initiated and guided by a Global Engineering Council for the purpose of examining and ranking various proposals and making specific recommendations

    Techno-economic comparison of renewable energy systems using multi-pole system analysis (MPSA)

    Full text link
    The recently published method of multi-pole system analysis (MPSA) is used to techno-economically compare two wind-energy converters: offshore wind turbines and the energy ship concept. According to the method, both systems are (i) modeled, (ii) energetically and economically analyzed, (iii) technoeconomically optimized and, finally, (iv) expected uncertainties are calculated and assessed. The results of the method are used to derive the necessary cost reduction of the wind-energy converters to be economically competitive to fossil-fuel-based technologies.The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for the financial support in the framework of the Excellence Initiative, Darmstadt Graduate School of Excellence Energy Science and Engineering (GSC 1070)

    Entrainment characteristics of unsteady subsonic jets

    Get PDF
    The effectiveness of jet unsteadiness in enhancing flow entrainment was assessed. It was conducted that entrainment depends on the type and amount of jet unsteadiness. Apparently, the mere introduction of jet unsteadiness by small sinusoidal flow angle variations is insufficient to enhance entrainment but, it should be noted that the results were obtained at measuring stations which are all many nozzle widths downstream of the jet nozzle. Thus, no fully conclusive statement can be made at this time about the entrainment close to the nozzle. The high entrainment of the fluidically oscillated jet was caused by the high-frequency content of this square wave type of oscillation but more detailed measurements are clearly needed, in particular for the fluidically oscillated and the pulsed jets. Practical ejector application requires the proper trade-off between entrainment and primary nozzle thrust efficiency

    Integrated Propulsion/Lift/Control System for Aircraft and Ship Applications

    Get PDF
    PatentA new method for boundary layer energization and boundary layer propulsion for use on vehicles moving through fluids, which comprises mounting small airfoils parallel or perpendicular to the vehicle's surface, said airfoils being embedded within the said vehicle's boundary layer and juxtaposed the surface of said vehicle, said airfoils being approximately the height of the boundary layer thickness and exciting said airfoils into flapping oscillation parallel to the chord plane of said airfoils, said oscillation at a frequency up to 100 cycles per second at an amplitude up to 20 percent of the chord length of said airfoil, whereby flow separation is delayed or suppressed which enables the redesign of said vehicle

    A general method for unsteady stagnation region heat transfer and results for model turbine flows

    Get PDF
    Recent experiments suggest that the heat-transfer characteristics of stator blades are influenced by the frequency of passing of upstream rotor blades. The calculation of these effects requires that the movement of the stagnation point with variations in freestream velocity is properly represented together with the possible effects of turbulence characteristics on the thin leading-edge boundary layer. A procedure to permit the achievement of these purposes is described for laminar flows in this paper together with results of its application to two model problems which demonstrate its abilities and quantify the influence of wake characteristics on fluid-dynamic and heat-transfer properties of the flow and their effects on surface heat transfer

    Dynamic airfoil stall investigations

    Get PDF
    Experimental and computational investigations of the dynamic stall phenomenon continue to attract the attention of various research groups in the major aeronautical research laboratories. There are two reasons for this continued research interest. First, the occurrence of dynamic stall on the retreating blade of helicopters imposes a severe performance limitation and thus suggests to search for ways to delay the onset of dynamic stall. Second, the lift enhancement prior to dynamic stall presents an opportunity to achieve enhanced maneuverability of fighter aircraft. A description of the major parameters affecting dynamic stall and lift and an evaluation of research efforts prior to 1988 has been given by Carr. In this paper the authors' recent progress in the development of experimental and computational methods to analyze the dynamic stall phenomena occurring on NACA 0112 airfoils is reviewed. First, the major experimental and computational approaches and results are summarized. This is followed by an assessment of our results and an outlook toward the future

    Compressibility effects on dynamic stall of airfoils undergoing rapid transient pitching motion

    Get PDF
    The research was carried out in the Compressible Dynamic Stall Facility, CDSF, at the Fluid Mechanics Laboratory (FML) of NASA Ames Research Center. The facility can produce realistic nondimensional pitch rates experienced by fighter aircraft, which on model scale could be as high as 3600/sec. Nonintrusive optical techniques were used for the measurements. The highlight of the effort was the development of a new real time interferometry method known as Point Diffraction Interferometry - PDI, for use in unsteady separated flows. This can yield instantaneous flow density information (and hence pressure distributions in isentropic flows) over the airfoil. A key finding is that the dynamic stall vortex forms just as the airfoil leading edge separation bubble opens-up. A major result is the observation and quantification of multiple shocks over the airfoil near the leading edge. A quantitative analysis of the PDI images shows that pitching airfoils produce larger suction peaks than steady airfoils at the same Mach number prior to stall. The peak suction level reached just before stall develops is the same at all unsteady rates and decreases with increase in Mach number. The suction is lost once the dynamic stall vortex or vortical structure begins to convect. Based on the knowledge gained from this preliminary analysis of the data, efforts to control dynamic stall were initiated. The focus of this work was to arrive at a dynamically changing leading edge shape that produces only 'acceptable' airfoil pressure distributions over a large angle of attack range

    NLO QCD corrections to processes with multiple electroweak bosons

    Full text link
    The VBFNLO program package is a collection of Monte Carlo programs for the calculation of NLO QCD corrections to vector boson fusion cross sections, double and triple vector boson production, or the production of two electroweak bosons in association with an additional jet. An overview is given of the processes and features implemented in VBFNLO. WWgamma and Wgamma jet production are discussed as examples.Comment: 6 pages, 3 figures; talk given at RADCOR 2009 - 9th International Symposium on Radiative Corrections (Applications of Quantum Field Theory to Phenomenology), October 25 - 30 2009, Ascona, Switzerlan

    Ocean Wind Power: Is it the key for a rapid transition to renewable energy? [video]

    Get PDF
    NPS Defense Energy SeminarDr. Maximilian F. Platzer, Distinguished Professor Emeritus, MAE Department, Naval Postgraduate Schoo

    Linear Fresnel Collector Receiver: Heat Loss and Temperatures

    Get PDF
    For design and component specification of a Linear Fresnel Collector (LFC) cavity receiver, the prediction of temperature distribution and heat loss is of great importance. In this paper we present a sensitivity analysis for a range of geometry and material parameters. For the LFC receiver analysis we use two models developed at Fraunhofer ISE. One is a detailed model, combining the spatial distribution of reflected radiation via ray tracing with detailed convective simulations through computational fluid dynamics. The second one is a fast algorithm based on a thermal resistance model. It is applying a similar methodology as the well-known model for vacuum absorber, enhancing an absorber tube model by parameters describing the influence of the secondary mirror and cover glass. The thermal resistance model is described in detail. Obtained results indicate a significant effect of the secondary mirror temperature on heat loss for specific geometries
    corecore