424 research outputs found

    Crystal structure of the dynamin tetramer

    Get PDF
    The mechanochemical protein dynamin is the prototype of the dynamin superfamily of large GTPases, which shape and remodel membranes in diverse cellular processes. Dynamin forms predominantly tetramers in the cytosol, which oligomerize at the neck of clathrin-coated vesicles to mediate constriction and subsequent scission of the membrane. Previous studies have described the architecture of dynamin dimers, but the molecular determinants for dynamin assembly and its regulation have remained unclear. Here we present the crystal structure of the human dynamin tetramer in the nucleotide-free state. Combining structural data with mutational studies, oligomerization measurements and Markov state models of molecular dynamics simulations, we suggest a mechanism by which oligomerization of dynamin is linked to the release of intramolecular autoinhibitory interactions. We elucidate how mutations that interfere with tetramer formation and autoinhibition can lead to the congenital muscle disorders Charcot-Marie-Tooth neuropathy and centronuclear myopathy, respectively. Notably, the bent shape of the tetramer explains how dynamin assembles into a right-handed helical oligomer of defined diameter, which has direct implications for its function in membrane constriction

    Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia

    Get PDF
    International audienceBACKGROUND: The genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast. RESULTS: We designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event. CONCLUSIONS: A public transcriptome resource is now available for Paramecium tetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention

    Concerted Action of Two Formins in Gliding Motility and Host Cell Invasion by Toxoplasma gondii

    Get PDF
    The invasive forms of apicomplexan parasites share a conserved form of gliding motility that powers parasite migration across biological barriers, host cell invasion and egress from infected cells. Previous studies have established that the duration and direction of gliding motility are determined by actin polymerization; however, regulators of actin dynamics in apicomplexans remain poorly characterized. In the absence of a complete ARP2/3 complex, the formin homology 2 domain containing proteins and the accessory protein profilin are presumed to orchestrate actin polymerization during host cell invasion. Here, we have undertaken the biochemical and functional characterization of two Toxoplasma gondii formins and established that they act in concert as actin nucleators during invasion. The importance of TgFRM1 for parasite motility has been assessed by conditional gene disruption. The contribution of each formin individually and jointly was revealed by an approach based upon the expression of dominant mutants with modified FH2 domains impaired in actin binding but still able to dimerize with their respective endogenous formin. These mutated FH2 domains were fused to the ligand-controlled destabilization domain (DD-FKBP) to achieve conditional expression. This strategy proved unique in identifying the non-redundant and critical roles of both formins in invasion. These findings provide new insights into how controlled actin polymerization drives the directional movement required for productive penetration of parasites into host cells

    Psychology and poverty reduction: a global special Issue

    Get PDF
    A “global special issue” on poverty brought together 9 international psychology journals during 2010 through 2013. The purpose was to highlight psychology’s contribution toward the Millennium Development Goals (MDGs). These goals are rooted in the “capabilities approach” and highlight the importance of fostering environments that support 3 core domains: health, basic education, and income. Here, we analyze what the global special issue contributed. As a whole the global special issue provided an account of “how” psychology engages with poverty and poverty reduction. First, the global special issue, more than other research on poverty, was focused on lower- and middle-income settings. Second, while the content of the articles could be coded into 3 specific domains (health/well-being, education/development, and society/work), the vast majority of the articles straddled more than 1 category. Third, the contents of the global special issue could be organized in terms of the type of contribution: that is, practicality, theory, description, and advocacy. We highlight the importance of addressing wider situational and sociopolitical structures that constrain capability and potential, without losing sight of the person. Psychology might (a) concentrate resources on finding out what actually works to enable poverty reduction; and (b) apply what we know to ensure that research on poverty reduction is more informative and compelling to community stakeholders, organizations, and policymakers. Such an “implementation science” could advance poverty reduction and human development. (PsycINFO Database Record (c) 2014 APA, all rights reserved

    Docking of LDCVs Is Modulated by Lower Intracellular [Ca2+] than Priming

    Get PDF
    Many regulatory steps precede final membrane fusion in neuroendocrine cells. Some parts of this preparatory cascade, including fusion and priming, are dependent on the intracellular Ca2+ concentration ([Ca2+]i). However, the functional implications of [Ca2+]i in the regulation of docking remain elusive and controversial due to an inability to determine the modulatory effect of [Ca2+]i. Using a combination of TIRF-microscopy and electrophysiology we followed the movement of large dense core vesicles (LDCVs) close to the plasma membrane, simultaneously measuring membrane capacitance and [Ca2+]i. We found that a free [Ca2+]i of 700 nM maximized the immediately releasable pool and minimized the lateral mobility of vesicles, which is consistent with a maximal increase of the pool size of primed LDCVs. The parameters that reflect docking, i.e. axial mobility and the fraction of LDCVs residing at the plasma membrane for less than 5 seconds, were strongly decreased at a free [Ca2+]i of 500 nM. These results provide the first evidence that docking and priming occur at different free intracellular Ca2+ concentrations, with docking efficiency being the most robust at 500 nM

    Overexpression of the aphid-induced serine protease inhibitor <i>CI2c </i>gene in barley affects the generalist green peach aphid, not the specialist bird cherry-oat aphid

    Get PDF
    <div><p>Aphids are serious pests in crop plants. In an effort to identify plant genes controlling resistance against aphids, we have here studied a protease inhibitor, CI2c in barley (<i>Hordeum vulgare</i> L.). The <i>CI2c</i> gene was earlier shown to be upregulated by herbivory of the bird cherry-oat aphid <i>(Rhopalosiphum padi</i> L.<i>)</i> in barley genotypes with moderate resistance against this aphid, but not in susceptible lines. We hypothesized that CI2c contributes to the resistance. To test this idea, cDNA encoding <i>CI2c</i> was overexpressed in barley and bioassays were carried out with <i>R</i>. <i>padi</i>. For comparison, tests were carried out with the green peach aphid (<i>Myzus persicae</i> Sulzer), for which barley is a poor host. The performance of <i>R</i>. <i>padi</i> was not different on the <i>CI2c</i>-overexpressing lines in comparison to controls in test monitoring behavior and fecundity. <i>M</i>. <i>persicae</i> preference was affected as shown in the choice test, this species moved away from control plants, but remained on the <i>CI2c</i>-overexpressing lines. <i>R</i>. <i>padi</i>-induced responses related to defense were repressed in the overexpressing lines as compared to in control plants or the moderately resistant genotypes. A putative susceptibility gene, coding for a β-1,3-glucanase was more strongly induced by aphids in one of the <i>CI2c</i>-overexpressing lines. The results indicate that the CI2c inhibitor in overexpressing lines affects aphid-induced responses by suppressing defense. This is of little consequence to the specialist <i>R</i>.<i>padi</i>, but causes lower non-host resistance towards the generalist <i>M</i>. <i>persicae</i> in barley.</p></div

    Astrophysical S-factor for the radiative capture reaction 13C(p,g)14N

    Full text link
    The phase shift analysis, done on the basis of the known measurements of the differential cross-sections of the p13C elastic scattering at the energy range 250-750 keV, shows that it is enough to take into account only 3S1 wave in the considered energy region. The potential for the triplet 3S1 state in p13C system at the resonance energy 0.55 MeV corresponding to quantum numbers JpT = 1-1 as well as the potential for the 3P1 bound state of 14N were constructed on the basis of the obtained scattering phase shifts. The possibility to describe the experimental data of the astrophysical S-factor of the p13C radiative capture at the energies 0.03-0.8 MeV was considered within the potential cluster model with the forbidden states. It was shown that we properly succeed in explanation of the energy behavior of the astrophysical S-factor for the p13C radiative capture at the resonance energy range 0.55 MeV (laboratory system).Comment: 8 p., 2 fi
    corecore