5,520 research outputs found
Detailed Geant4 simulations of the ANITA and ANITA-CUP neutron facilities
Simulations of the ANITA spallation neutron source at The Svedberg Laboratory (TSL) are described. Neutron radiation calculations show close agreement with measurements at both standard and close user positions. Gamma radiation characteristics are also predicted
Opposing shear senses in a subdetachment mylonite zone: Implications for core complex mechanics
[1] Global studies of metamorphic core complexes and lowâangle detachment faults have highlighted a fundamental problem: Since detachments excise crustal section, the relationship between the mylonitic rocks in their footwalls and the brittle deformation in their hanging walls is commonly unclear. Mylonites could either reflect ductile deformation related to exhumation along the detachment fault, or they could be a more general feature of the extending middle crust that has been âcaptured â by the detachment. In the first case we would expect the kinematics of the mylonite zone to mirror the sense of movement on the detachment; in the second case both the direction and sense of shear in the mylonites could be different. The northern Snake Range dĂ©collement (NSRD) is a classic Basin and Range detachment fault with a wellâdocumented topâeast of displacement. We present structural, paleo-magnetic, geochronological, and geothermometric evidence to suggest that the mylonite zone below the NSRD locally experienced phases of both east â and westâdirected shear, inconsistent with movement along a single detachment fault. We therefore propose that the footwall mylonites represent a predetachment dis-continuity in the middle crust that separated localized deformation above from distributed crustal flow below (localizedâdistributed transition (LDT)). The mylonites were subsequently captured by a moderately dipping brittle detachment that soled down to the middle crust and exhumed them around a rolling hinge into a subhorizontal orientation at the surface, produc-ing the presentâday NSRD. In this interpretation the brittle hanging wall represents a series of rotated upper crustal normal faults, whereas the mylonitic footwall represents one or more exhumed middl
Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source
The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10âMeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 107. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays
Genetic distance predicts trait differentiation at the subpopulation but not the individual level in eelgrass, Zostera marina.
Ecological studies often assume that genetically similar individuals will be more similar in phenotypic traits, such that genetic diversity can serve as a proxy for trait diversity. Here, we explicitly test the relationship between genetic relatedness and trait distance using 40 eelgrass (Zostera marina) genotypes from five sites within Bodega Harbor, CA. We measured traits related to nutrient uptake, morphology, biomass and growth, photosynthesis, and chemical deterrents for all genotypes. We used these trait measurements to calculate a multivariate pairwise trait distance for all possible genotype combinations. We then estimated pairwise relatedness from 11 microsatellite markers. We found significant trait variation among genotypes for nearly every measured trait; however, there was no evidence of a significant correlation between pairwise genetic relatedness and multivariate trait distance among individuals. However, at the subpopulation level (sites within a harbor), genetic (FST) and trait differentiation were positively correlated. Our work suggests that pairwise relatedness estimated from neutral marker loci is a poor proxy for trait differentiation between individual genotypes. It remains to be seen whether genomewide measures of genetic differentiation or easily measured "master" traits (like body size) might provide good predictions of overall trait differentiation
A study into the impact of interface roughness development on mechanical degradation of oxides formed on zirconium alloys
AbstractAs a cladding material used to encapsulate nuclear fuel pellets, zirconium alloys are the primary barrier separating the fuel and a pressurised steam or lithiated water environment. Degradation mechanisms such as oxidation can be the limiting factor in the life-time of the fuel assembly. Key to controlling oxidation, and therefore allowing increased burn-up of fuel, is the development of a mechanistic understanding of the corrosion process. In an autoclave, the oxidation kinetics for zirconium alloys are typically cyclical, with periods of accelerated kinetics being observed in steps of âŒ2ÎŒm oxide growth. These periods of accelerated oxidation are immediately preceded by the development of a layer of lateral cracks near the metal-oxide interface, which may be associated with the development of interface roughness. The present work uses scanning electron microscopy to carry out a statistical analysis of changes in the metal-oxide interface roughness between three different alloys at different stages of autoclave oxidation. The first two alloys are Zircaloy-4 and ZIRLOâą for which analysis is carried out at stages before, during and after first transition. The third alloy is an experimental low tin alloy, which under the same oxidation conditions and during the same time period does not appear to go through transition. Assessment of the metal-oxide interface roughness is primarily carried out based on the root mean square of the interface slope known as the Rdq parameter. Results show clear trends with relation to transition points in the corrosion kinetics. Discussion is given to how this relates to the existing mechanistic understanding of the corrosion process, and the components required for possible future modelling approaches
Universal Scaling Properties in Large Assemblies of Simple Dynamical Units Driven by Long-Wave Random Forcing
Large assemblies of nonlinear dynamical units driven by a long-wave
fluctuating external field are found to generate strong turbulence with scaling
properties. This type of turbulence is so robust that it persists over a finite
parameter range with parameter-dependent exponents of singularity, and is
insensitive to the specific nature of the dynamical units involved. Whether or
not the units are coupled with their neighborhood is also unimportant. It is
discovered numerically that the derivative of the field exhibits strong spatial
intermittency with multifractal structure.Comment: 10 pages, 7 figures, submitted to PR
Estimating oceanic primary production using vertical irradiance and chlorophyll profiles from ocean gliders in the North Atlantic
An autonomous underwater vehicle (Seaglider) has been used to estimate marine primary production (PP) using a combination of irradiance and fluorescence vertical profiles. This method provides estimates for depth-resolved and temporally evolving PP on fine spatial scales in the absence of ship-based calibrations. We describe techniques to correct for known issues associated with long autonomous deployments such as sensor calibration drift and fluorescence quenching. Comparisons were made between the Seaglider, stable isotope (13C), and satellite estimates of PP. The Seaglider-based PP estimates were comparable to both satellite estimates and stable isotope measurements
- âŠ