202 research outputs found

    An interval logic for higher-level temporal reasoning

    Get PDF
    Prior work explored temporal logics, based on classical modal logics, as a framework for specifying and reasoning about concurrent programs, distributed systems, and communications protocols, and reported on efforts using temporal reasoning primitives to express very high level abstract requirements that a program or system is to satisfy. Based on experience with those primitives, this report describes an Interval Logic that is more suitable for expressing such higher level temporal properties. The report provides a formal semantics for the Interval Logic, and several examples of its use. A description of decision procedures for the logic is also included

    The Model Evolution Calculus with Equality

    Full text link
    In many theorem proving applications, a proper treatment of equational theories or equality is mandatory. In this paper we show how to integrate a modern treatment of equality in the Model Evolution calculus (ME), a first-order version of the propositional DPLL procedure. The new calculus, MEE, is a proper extension of the ME calculus without equality. Like ME it maintains an explicit ``candidate model'', which is searched for by DPLL-style splitting. For equational reasoning MEE uses an adapted version of the ordered paramodulation inference rule, where equations used for paramodulation are drawn (only) from the candidate model. The calculus also features a generic, semantically justified simplification rule which covers many simplification techniques known from superposition-style theorem proving. Our main result is the refutational completeness of the MEE calculus

    Restart tableaux with selection function

    Full text link

    New results on rewrite-based satisfiability procedures

    Full text link
    Program analysis and verification require decision procedures to reason on theories of data structures. Many problems can be reduced to the satisfiability of sets of ground literals in theory T. If a sound and complete inference system for first-order logic is guaranteed to terminate on T-satisfiability problems, any theorem-proving strategy with that system and a fair search plan is a T-satisfiability procedure. We prove termination of a rewrite-based first-order engine on the theories of records, integer offsets, integer offsets modulo and lists. We give a modularity theorem stating sufficient conditions for termination on a combinations of theories, given termination on each. The above theories, as well as others, satisfy these conditions. We introduce several sets of benchmarks on these theories and their combinations, including both parametric synthetic benchmarks to test scalability, and real-world problems to test performances on huge sets of literals. We compare the rewrite-based theorem prover E with the validity checkers CVC and CVC Lite. Contrary to the folklore that a general-purpose prover cannot compete with reasoners with built-in theories, the experiments are overall favorable to the theorem prover, showing that not only the rewriting approach is elegant and conceptually simple, but has important practical implications.Comment: To appear in the ACM Transactions on Computational Logic, 49 page

    The potato R locus codes for dihydroflavonol 4-reductase

    Get PDF
    The potato R locus is required for the production of red pelargonidin-based anthocyanin pigments in potato (Solanum tuberosum L.). Red color also requires tissue-specific regulatory genes, such as D (for expression in tuber skin) and F (expression in flowers). A related locus, P, is required for production of blue/purple anthocyanins; P is epistatic to R. We have previously reported that the dihydroflavonol 4-reductase gene (dfr) co-segregates with R. To test directly whether R corresponds to dfr, we placed the allele of dfr associated with red color under the control of the CaMV 35S promoter and introduced it into the potato cultivar Prince Hairy (genotype dddd rrrr P-), which has white tubers and pale blue flowers. Transgenic Prince Hairy tubers remained white, but flower color changed to purple. Three independent transgenic lines, as well as a vector-transformed line, were then crossed with the red-skinned variety Chieftain (genotype D-R-pppp), to establish populations that segregated for D, R, P, and the dfr transgene or empty vector. Markers were used to genotype progeny at D and R. Progeny carrying the empty vector in the genetic background D-rrrr produced white or purple tubers, while progeny with the same genotype and the dfr transgene produced red or purple tubers. HPLC and LC–MS/MS analyses of anthocyanins present in Chieftain and in a red-skinned progeny clone with the dfr transgene in a D-rrrr background revealed no qualitative differences. Thus, dfr can fully complement R, both in terms of tuber color and anthocyanin composition

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Global and local perceptual style, field-independence, and central coherence: An attempt at concept validation.

    Get PDF
    Historically, the concepts of field-independence, closure flexibility, and weak central coherence have been used to denote a locally, rather globally, dominated perceptual style. To date, there has been little attempt to clarify the relationship between these constructs, or to examine the convergent validity of the various tasks purported to measure them. To address this, we administered 14 tasks that have been used to study visual perceptual styles to a group of 90 neuro-typical adults. The data were subjected to exploratory factor analysis. We found evidence for the existence of a narrowly defined weak central coherence (field-independence) factor that received loadings from only a few of the tasks used to operationalise this concept. This factor can most aptly be described as representing the ability to dis-embed a simple stimulus from a more complex array. The results suggest that future studies of perceptual styles should include tasks whose theoretical validity is empirically verified, as such validity cannot be established merely on the basis of a priori task analysis. Moreover, the use of multiple indices is required to capture the latent dimensions of perceptual styles reliably

    Enhanced Visual Temporal Resolution in Autism Spectrum Disorders

    Get PDF
    Cognitive functions that rely on accurate sequencing of events, such as action planning and execution, verbal and nonverbal communication, and social interaction rely on well-tuned coding of temporal event-structure. Visual temporal event-structure coding was tested in 17 high-functioning adolescents and adults with autism spectrum disorder (ASD) and mental- and chronological-age matched typically-developing (TD) individuals using a perceptual simultaneity paradigm. Visual simultaneity thresholds were lower in individuals with ASD compared to TD individuals, suggesting that autism may be characterised by increased parsing of temporal event-structure, with a decreased capability for integration over time. Lower perceptual simultaneity thresholds in ASD were also related to increased developmental communication difficulties. These results are linked to detail-focussed and local processing bias
    corecore