361 research outputs found

    Surface Deformation Induced by Present-Day Ice Melting in Svalbard

    Get PDF
    The vertical movement of the Earth\u27s surface is the result of a number of internal processes in the solid Earth, tidal forces and mass redistribution in the atmosphere, oceans, terrestrial hydrosphere and cryosphere. Close to ice sheets and glaciers, the changes in the ice loads can induce large vertical motions at intraseasonal to secular timescales. The Global Positioning System (GPS) and Very Long Baseline Interferometry (VLBI) antennas in Ny-Ålesund, Svalbard that started observations in 1991 and 1995, respectively, observe vertical uplift rates on the order of mm yr−1, which are considerably larger than those predicted by postglacial rebound (PGR) models (order 2 mm yr−1). The observations also indicate increased uplift rates starting some time in 2000. A local GPS campaign network that has been reoccupied annually since 1998, reveals a tilting away from the neighbouring glaciers. The Svalbard glaciers have been undergoing melting and retreat during the last century, with increased melting since about 2000. We compared the observed vertical motion to the motion predicted by loading models using a detailed ice model with annual time resolution as forcing. The model predictions correlate well with the observations both with respect to the interannual variations and the spatial pattern of long-term trends. The regression coefficients for predicted and observed interannual variations in height is , whereas the regression coefficient for the predicted and observed spatial pattern turns out to be . Estimates of the predicted secular trend in height due to PGR and present-day melting are on the order of mm yr−1 and thus smaller than the observed secular trend in height. This discrepancy between predictions and observations is likely caused by the sum of errors in the secular rates determined from observations (due to technique-dependent large-scale offsets) and incomplete or erroneous models (unaccounted tectonic vertical motion, errors in the ice load history, scale errors in the viscoelastic PGR models and the elastic models for present-day melting)

    The current panorama of European Network of Earth Observation Networks and the need for an European Network of Networks - ENEON

    Get PDF
    ENEON is the European Network of Earth Observation Networks, funded by the European Union under the H2020ConnectinGEO project mainly including non-space networks to better coordinate them, with the aim of providing better observations for resolving interdisciplinary problems, to improve the European in-situ participation in GEO and in support of the implementation and monitoring of the UN Sustainable Development Goals

    Testing Ocean Tide Models in the Nordic Seas with Tidal Gravity Observations

    Get PDF
    Examines the accuracy of ocean tide models in the Nordic seas. Tidal gravity observations; Computation of ocean tide loading; Phase lag of the ocean tide models

    Exploring high-end climate change scenarios for flood protection of the Netherlands

    Get PDF
    This international scientific assessment has been carried out at the request of the Dutch Delta Committee. The "Deltacommissie" requested that the assessment explore the high-end climate change scenarios for flood protection of the Netherlands. It is a state-of–the art scientific assessment of the upper bound values and longer term projections (for sea level rise up to 2200) of climate induced sea level rise, changing storm surge conditions and peak discharge of river Rhine. It comprises a review of recent studies, model projections and expert opinions of more than 20 leading climate scientists from different countries around the North Sea, Australia and the US

    Comparison of GPS analysis strategies for high-accuracy vertical land motion

    Get PDF
    Tide gauges measure sea level changes relative to land. To separate absolute changes in sea level from vertical land movements tide gauges are often co-located with Continuous GPS (CGPS). In order to achieve an accuracy of better than 1 mm/yr, as required for sea level studies in the global change context, vertical land motion needs to be determined with the same accuracy. This is an ambitious goal for CGPS and needs a carefully designed analysis strategy. We have compared the independent results from six different analysis centres, using three different GPS processing softwares and a number of different analysis strategies. Based on the comparison, we discuss the achieved accuracy and the quality of the different strategies. The data analysed are from the CGPS network of the European Sea Level Service and cover the time window from the beginning of 2000 until the end of 2003. The comparison reveals large differences in the day-to-day variations of the coordinate time series and also in the seasonal cycle contained in these. The trends show systematic differences, depending on software and strategy used. To a large extent, the latter deviations can be explained by differences in the realisation of the reference frame, while some parts may be due to other, as yet, unidentified contributions. The results suggest that the reference frame and its relation to the center of mass of the Earth system may be the main limitation in achieving the accuracy goal for the secular velocity of vertical land motion.Peer ReviewedPostprint (published version

    Coulomb excitation of exotic nuclei at the R3B-LAND setup

    Full text link
    Exotic Ni isotopes have been measured at the R3B-LAND setup at GSI in Darmstadt, using Coulomb excitation in inverse kinematics at beam energies around 500 MeV/u. As the experimental setup allows kinematically complete measurements, the excitation energy was reconstructed using the invariant mass method. The GDR and additional low-lying strength have been observed in 68Ni, the latter exhausting 4.1(1.9)% of the E1 energy-weighted sum rule. Also, the branching ratio for the non-statistical decay of the excited 68Ni nuclei was measured and amounts to 24(4)%.Comment: 11 pages, 7 figures. Invited Talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Coulomb breakup of neutron-rich 29,30^{29,30}Na isotopes near the island of inversion

    Get PDF
    First results are reported on the ground state configurations of the neutron-rich 29,30^{29,30}Na isotopes, obtained via Coulomb dissociation (CD) measurements as a method of the direct probe. The invariant mass spectra of those nuclei have been obtained through measurement of the four-momentum of all decay products after Coulomb excitation on a 208Pb^{208}Pb target at energies of 400-430 MeV/nucleon using FRS-ALADIN-LAND setup at GSI, Darmstadt. Integrated Coulomb-dissociation cross-sections (CD) of 89 (7)(7) mb and 167 (13)(13) mb up to excitation energy of 10 MeV for one neutron removal from 29^{29}Na and 30^{30}Na respectively, have been extracted. The major part of one neutron removal, CD cross-sections of those nuclei populate core, in its' ground state. A comparison with the direct breakup model, suggests the predominant occupation of the valence neutron in the ground state of 29^{29}Na(3/2+){(3/2^+)} and 30^{30}Na(2+){(2^+)} is the dd orbital with small contribution in the ss-orbital which are coupled with ground state of the core. The ground state configurations of these nuclei are as 28^{28}Na_{gs (1^+)\otimes\nu_{s,d} and 29^{29}Nags(3/2+)⊗Μs,d_{gs}(3/2^+)\otimes\nu_{ s,d}, respectively. The ground state spin and parity of these nuclei, obtained from this experiment are in agreement with earlier reported values. The spectroscopic factors for the valence neutron occupying the ss and dd orbitals for these nuclei in the ground state have been extracted and reported for the first time. A comparison of the experimental findings with the shell model calculation using MCSM suggests a lower limit of around 4.3 MeV of the sd-pf shell gap in 30^{30}Na.Comment: Modified version of the manuscript is accepted for publication in Journal of Physics G, Jan., 201

    Modelling semantic transparency

    Get PDF
    We present models of semantic transparency in which the perceived trans- parency of English noun–noun compounds, and of their constituent words, is pre- dicted on the basis of the expectedness of their semantic structure. We show that such compounds are perceived as more transparent when the first noun is more frequent, hence more expected, in the language generally; when the compound semantic rela- tion is more frequent, hence more expected, in association with the first noun; and when the second noun is more productive, hence more expected, as the second ele- ment of a noun–noun compound. Taken together, our models of compound and con- stituent transparency lead us to two conclusions. Firstly, although compound trans- parency is a function of the transparencies of the constituents, the two constituents differ in the nature of their contribution. Secondly, since all the significant predictors in our models of compound transparency are also known predictors of processing speed, perceived transparency may itself be a reflex of ease of processing
    • 

    corecore