32 research outputs found

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Genomic analysis of male puberty timing highlights shared genetic basis with hair colour and lifespan

    Get PDF
    Abstract: The timing of puberty is highly variable and is associated with long-term health outcomes. To date, understanding of the genetic control of puberty timing is based largely on studies in women. Here, we report a multi-trait genome-wide association study for male puberty timing with an effective sample size of 205,354 men. We find moderately strong genomic correlation in puberty timing between sexes (rg = 0.68) and identify 76 independent signals for male puberty timing. Implicated mechanisms include an unexpected link between puberty timing and natural hair colour, possibly reflecting common effects of pituitary hormones on puberty and pigmentation. Earlier male puberty timing is genetically correlated with several adverse health outcomes and Mendelian randomization analyses show a genetic association between male puberty timing and shorter lifespan. These findings highlight the relationships between puberty timing and health outcomes, and demonstrate the value of genetic studies of puberty timing in both sexes

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Can We Survive Science?—Steve Fuller's Humanity 2.0

    No full text
    The founding fathers of sociology, such as Auguste Comte and Saint Simon, had a close engagement with debates and research in biology. Comte, for example, argued that it was by modeling itself on the holistic framework of biology that sociology could emerge as a scientific discipline and at the same time contribute to the revolutionary development of society. France was to be at the center of both revolutions in science and society (Gane 2006:3). Emile Durkheim (1951, 1958) and his generation thought in terms of medical metaphors such as “social pathology” to describe crime and deviance or the malfunctioning of social groups. In Suicide, the notion of anomie is an illustration of social pathology which he also developed in The Rules of Sociological Method. Ideas from evolutionary biology also entered into early sociology through the theories of Charles Darwin and primarily through the general impact of Herbert Spencer on early sociology. Spencer’s influence was fundamental to 19th-century sociology. The quest to create a science of society is neatly described by Daniel Breslau (2007:42–43) in his account of “The American Spencerians” when he notes that the “early sociologists were not interested in a sociology that looked like the natural sciences but in a natural science about society.” From these opening remarks, we can conclude that 19th-century sociologists closely followed developments in the natural sciences and that evolutionary biology provided an appropriate route toward “a natural science about society.

    Purification and spectropotentiometric characterization of Escherichia coli NrfB, a decaheme homodimer that transfers electrons to the decaheme periplasmic nitrite reductase complex.

    No full text
    Escherichia coli can reduce nitrite to ammonium via a 120-kDa decaheme homodimeric periplasmic nitrite reductase (NrfA) complex. Recent structure-based spectropotentiometric studies are shedding light on the catalytic mechanism of NrfA; however, electron input into the enzyme has not been addressed biochemically. This study reports the first purification of NrfB, a novel 20-kDa pentaheme c-type cytochrome encoded by the nrfB gene that follows the nrfA gene in many bacterial nrf operons. Analyses by gel filtration demonstrated that NrfB purifies as a decaheme homodimer. Analysis of NrfB by UV-visible and magnetic circular dichroism spectroscopy demonstrates that all five NrfB ferric heme irons are low spin and are most likely coordinated by two axial histidine ligands. Spectropotentiometry revealed that the midpoint redox potentials of five ferric hemes were in the low potential range of 0 to –400 mV. Analysis by low temperature EPR spectroscopy revealed signals that arise from two classes of bis-His ligated low spin hemes, namely a rhombic trio at g1,2,3 = 2.99, 2.27, and 1.5 that arises from two hemes in which the planes of histidine imidazole rings are near-parallel and a large gmax signal at g = 3.57 that arises from three hemes in which the planes of the histidine imidazole rings are near-perpendicular. NrfB was also overexpressed as a recombinant protein, which had similar spectropotentiometric properties as the native protein. Reconstitution experiments demonstrated that the reduced decaheme NrfB dimer could serve as a direct electron donor to the oxidized decaheme NrfA dimer, thus forming a transient 20-heme [NrfB]2[NrfA]2 electron transfer complex
    corecore