105 research outputs found

    Hydrogeology and hydrogeochemistry of an alkaline volcanic area: the NE Mt. Meru slope (East African Rift – Northern Tanzania)

    Get PDF
    Abstract. The objective of this study is to analyze the geochemical conditions associated with the presence of fluoride (F−) in the groundwater of an area of Northern Tanzania. The studied aquifers are composed of volcanic rocks such as phonolitic and nephelinitic lavas, basalts, lahars of various ages and mantling ash. Sedimentary rocks consisting of fine-grained alluvial and lacustrine deposits occur as well. Samples collected from springs, borehole and surface water, during two monitoring surveys, were analyzed for the various physico-chemical and isotopic parameters. The geochemical composition of water is typically sodium bicarbonate. High values of F− (up to 68 mg l−1) were recorded. The highest values of fluoride agreed with the highest values of pH, sodium and bicarbonate. Dissolution of major ions, exchange processes and precipitation of Ca2+ from super-saturated solutions joined with the local permeability and hydraulic gradients, control the fluoride mobilization and the contamination of the area

    Exchange-correlation orbital functionals in current-density-functional theory: Application to a quantum dot in magnetic fields

    Full text link
    The description of interacting many-electron systems in external magnetic fields is considered in the framework of the optimized effective potential method extended to current-spin-density functional theory. As a case study, a two-dimensional quantum dot in external magnetic fields is investigated. Excellent agreement with quantum Monte Carlo results is obtained when self-interaction corrected correlation energies from the standard local spin-density approximation are added to exact-exchange results. Full self-consistency within the complete current-spin-density-functional framework is found to be of minor importance.Comment: 5 pages, 2 figures, submitted to PR

    Anti-adiabatic limit of the exchange-correlation kernels of an inhomogeneous electron gas

    Get PDF
    We express the high-frequency (anti-adiabatic) limit of the exchange-correlation kernels of an inhomogeneous electron gas in terms of the following equilibrium properties: the ground-state density, the kinetic stress tensor, the pair-correlation function, and the ground-state exchange-correlation potential. Of these quantities, the first three are amenable to exact evaluation by Quantum Monte Carlo methods, while the last can be obtained from the inversion of the Kohn-Sham equation for the ground-state orbitals. The exact scalar kernel, in this limit, is found to be of very long range in space, at variance with the kernel that is used in the standard local density approximation. The anti-adiabatic xc kernels should be useful in calculations of excitation energies by time-dependent DFT in atoms, molecules, and solids, and provides a solid basis for interpolation between the low- and high-frequency limits of the xc kernels.Comment: 9 pages, 3 figures, to be submitted to PR

    Sustainable water resources management to combat desertification in the Nurra region, northwestern Sardinia, Italy

    Get PDF
    Sustainable water management plays an important role in the frame of the multidisciplinary research activities aiming to combat or to mitigate the desertification processes. The study activities have been carried out by RIADE Research Project (Integrated Research for Applying new technologies and processes for combating Desertification, www.riade.net. RIADE was co-financed by MIUR within the National Operative Programme 2000-2006. The primary objective was to explore and to develop models and strategies for innovative and sustainable solutions of water resources management, adopting a multidisciplinary approach, at the catchment and hydrogeological basin scale in a Mediterranean context, using a case history of a pilot area in NW Sardinia (Italy). The high concentration of population in this coastal zone and the intense agricultural activity have determined a relevant increase of water demand. This demand is generally satisfied by surface water, but, in some peculiar dry periods, it exceeds the available quantities. In these critical periods, groundwater are the only alternative source constituting a strategic water resource. The groundwater chemical properties are then correlated with the effects of the anthropogenic pressures. The used approach shows the application of groundwater protection criteria, in accordance with EU policies, and it was aimed to develop a methodological tool which can be applied to different scenarios

    Quantum continuum mechanics in a strong magnetic field

    Full text link
    We extend a recent formulation of quantum continuum mechanics [J. Tao et. al, Phys. Rev. Lett. {\bf 103}, 086401 (2009)] to many-body systems subjected to a magnetic field. To accomplish this, we propose a modified Lagrangian approach, in which motion of infinitesimal volume elements of the system is referred to the "quantum convective motion" that the magnetic field produces already in the ground-state of the system. In the linear approximation, this approach results in a redefinition of the elastic displacement field \uv, such that the particle current \jv contains both an electric displacement and a magnetization contribution: \jv=\jv_0+n_0\partial_t \uv+\nabla \times (\jv_0\times \uv), where n0n_0 and \jv_0 are the particle density and the current density of the ground-state and ∂t\partial_t is the partial derivative with respect to time. In terms of this displacement, we formulate an "elastic approximation" analogous to the one proposed in the absence of magnetic field. The resulting equation of motion for \uv is expressed in terms of ground-state properties -- the one-particle density matrix and the two-particle pair correlation function -- and in this form it neatly generalizes the equation obtained for vanishing magnetic field.Comment: 13 pages, revised version accepted to PR

    Hydrodynamics in evaporate-bearing fine-grained successions investigated through an interdisciplinary approach : A test study in southern Italy-hydrogeological behaviour of heterogeneous low-permeability media

    Get PDF
    Messinian evaporates are widely distributed in the Mediterranean Sea as outcropping sediments in small marginal basins and in marine cores. Progressive filling of subbasins led to the formation of complex aquifer systems in different regions where hypersaline and fresh water coexist and interact in different manner. It also generates a significant diversification of groundwater hydrochemical signature and different microbial communities. In the case study, the hydrogeology and hydrochemistry of the whole system are influenced by good hydraulic connection between the shallower pyroclastic horizon and the underlying evaporate-bearing fine-grained Messinian succession. This is demonstrated by the merge of hydrogeological, chemical, isotopic, and microbiological data. No mixing with deep ascending waters has been observed. As shown by geophysical, hydraulic, and microbiological investigations, the hydraulic heterogeneity of the Messinian bedrock, mainly due to karstified evaporitic interstrata/lenses, causes the hydraulic head to significantly vary with depth. Somewhere, the head increases with the depth's increase and artesian flow conditions are locally observed. Moreover, the metagenomic investigations demonstrated the existence of a poor hydraulic connection within the evaporate-bearing fine-grained succession at metric and decametric scales, therefore leading to a patchwork of geochemical (and microbiological) subenvironments

    Phononic Self energy effects and superconductivity in CaC6_6

    Full text link
    We study the graphite intercalated compound CaC6_6 by means of Eliashberg theory, focusing on the anisotropy properties. An analysis of the electron-phonon coupling is performed, and we define a minimal 6-band anisotropy structure. Comparing with Superconducting Density Functional Theory (SCDFT) the condition under which Eliashberg theory is able to reproduce the SCDFT gap structure is determined, and we discuss the role of Coulomb interactions. The Engelsberg-Schrieffer polaron structure is computed by solving the Eliashberg equation on the Matsubara axis and analytically continuing it to the full complex plane. This reveals the polaronic quasiparticle bands anisotropic features as well as the interplay with superconductivity

    Hydrogeological and multi-isotopic approach to define nitrate pollution and denitrification processes in a coastal aquifer (Sardinia, Italy)

    Get PDF
    Agricultural coastal areas are frequently affected by the superimposition of various processes, with a combination of anthropogenic and natural sources, which degrade groundwater quality. In the coastal multi-aquifer system of Arborea (Italy)¿a reclaimed morass area identified as a nitrate vulnerable zone, according to Nitrate Directive 91/676/EEC¿intensive agricultural and livestock activities contribute to substantial nitrate contamination. For this reason, the area can be considered a bench test for tuning an appropriate methodology aiming to trace the nitrate contamination in different conditions. An approach combining environmental isotopes, water quality and hydrogeological indicators was therefore used to understand the origins and attenuation mechanisms of nitrate pollution and to define the relationship between contaminant and groundwater flow dynamics through the multi-aquifer characterized by sandy (SHU), alluvial (AHU), and volcanic hydrogeological (VHU) units. Various groundwater chemical pathways were consistent with both different nitrogen sources and groundwater dynamics. Isotope composition suggests a mixed source for nitrate (organic and synthetic fertilizer), especially for the AHU and SHU groundwater. Moreover, marked heterotrophic denitrification and sulfate reduction processes were detected; although, for the contamination related to synthetic fertilizer, the attenuation was inefficient at removing NO3− to less than the human consumption threshold of 50 mg/L. Various factors contributed to control the distribution of the redox processes, such as the availability of carbon sources (organic fertilizer and the presence of lagoon-deposited aquitards), well depth, and groundwater flow paths. The characterization of these processes supports water-resource management plans, future actions, and regulations, particularly in nitrate vulnerable zones

    F-bearing sediments and rocks in the East African Rift: characterization and evaluation of F release capacity

    Get PDF
    Fluoride represents one of the most severe natural contaminant that affects groundwater as well as rivers and soils. More than 200 million people worldwide consume water with fluoride concentration exceeding the WHO guideline of 1.5 mg L-1 (WHO, 2008)

    First-principles approach to noncollinear magnetism: Towards spin dynamics

    Get PDF
    A description of noncollinear magnetism in the framework of spin-density functional theory is presented for the exact exchange energy functional which depends explicitly on two-component spinor orbitals. The equations for the effective Kohn-Sham scalar potential and magnetic field are derived within the optimized effective potential (OEP) framework. With the example of a magnetically frustrated Cr monolayer it is shown that the resulting magnetization density exhibits much more noncollinear structure than standard calculations. Furthermore, a time-dependent generalization of the noncollinear OEP method is well suited for an ab initio description of spin dynamics. We also show that the magnetic moments of solids Fe, Co, and Ni are well reproduced
    • …
    corecore