825 research outputs found

    Properties, mechanism and applications of diamond as an antibacterial material

    Get PDF
    Antibiotic resistance in bacteria is a current threat causing an increasing number of infections of difficult clinical management. While the overuse and misuse of antibiotics are investigated to reduce them, the need for alternatives to approaches is rising. Carbon-based materials shown recent moderate to high antibacterial properties and diamond, thanks to its superior mechanical, tribological, electrical, chemical and biological quality is a choice material to investigate for safe antibacterial films, coatings and particles. Here, the antibacterial properties of diamond films, nanodiamonds, DLC films and a comprehensive list of the composites developed from them are discussed along with a summary of the bacterial strains used and the most efficient composition and/or concentration discovered. In a later stage, the mechanisms of action and the parameters that are believed to influence them are discussed and finally, an overview of the biomedical and food industry applications is given

    Identification of membrane engineering targets for increased butanol tolerance in Clostridium saccharoperbutylacetonicum

    Get PDF
    There is a growing interest in the use of microbial cell factories to produce butanol, an industrial solvent and platform chemical. Biobutanol can also be used as a biofuel and represents a cleaner and more sustainable alternative to the use of conventional fossil fuels. Solventogenic Clostridia are the most popular microorganisms used due to the native expression of butanol synthesis pathways. A major drawback to the wide scale implementation and development of these technologies is the toxicity of butanol. Various membrane properties and related functions are perturbed by the interaction of butanol with the cell membrane, causing lower yields and higher purification costs. This is ultimately why the technology remains underemployed. This study aimed to develop a deeper understanding of butanol toxicity at the membrane to determine future targets for membrane engineering. Changes to the lipidome in Clostridium saccharoperbutylacetonicum N1–4 (HMT) throughout butanol fermentation were investigated with thin layer chromatography and mass spectrometry. By the end of fermentation, levels of phosphatidylglycerol lipids had increased significantly, suggesting an important role of these lipid species in tolerance to butanol. Using membrane models and in vitro assays to investigate characteristics such as permeability, fluidity, and swelling, it was found that altering the composition of membrane models can convey tolerance to butanol, and that modulating membrane fluidity appears to be a key factor. Data presented here will ultimately help to inform rational strain engineering efforts to produce more robust strains capable of producing higher butanol titres

    Quantification of functionalised gold nanoparticle-targeted knockdown of gene expression in HeLa cells

    Get PDF
    Introduction: Gene therapy continues to grow as an important area of research, primarily because of its potential in the treatment of disease. One significant area where there is a need for better understanding is in improving the efficiency of oligonucleotide delivery to the cell and indeed, following delivery, the characterization of the effects on the cell. Methods: In this report, we compare different transfection reagents as delivery vehicles for gold nanoparticles functionalized with DNA oligonucleotides, and quantify their relative transfection efficiencies. The inhibitory properties of small interfering RNA (siRNA), single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA) sequences targeted to human metallothionein hMT-IIa are also quantified in HeLa cells. Techniques used in this study include fluorescence and confocal microscopy, qPCR and Western analysis. Findings: We show that the use of transfection reagents does significantly increase nanoparticle transfection efficiencies. Furthermore, siRNA, ssRNA and ssDNA sequences all have comparable inhibitory properties to ssDNA sequences immobilized onto gold nanoparticles. We also show that functionalized gold nanoparticles can co-localize with autophagosomes and illustrate other factors that can affect data collection and interpretation when performing studies with functionalized nanoparticles. Conclusions: The desired outcome for biological knockdown studies is the efficient reduction of a specific target; which we demonstrate by using ssDNA inhibitory sequences targeted to human metallothionein IIa gene transcripts that result in the knockdown of both the mRNA transcript and the target protein

    A high-sensitivity electrochemiluminescence-based ELISA for the measurement of the oxidative stress biomarker, 3-nitrotyrosine, in human blood serum and cells

    Get PDF
    The generation of 3-nitrotyrosine, within proteins, is a post-translational modification resulting from oxidative or nitrative stress. It has been suggested that this modification could be used as a biomarker for inflammatory diseases. Despite the superiority of mass spectrometry-based determinations of nitrotyrosine, in a high-throughput clinical setting the measurement of nitrotyrosine by an enzyme-linked immunosorbent assay (ELISA) is likely to be more cost-effective. ELISAs offer an alternative means to detect nitrotyrosine, but many commercially available ELISAs are insufficiently sensitive to detect nitrotyrosine in healthy human serum. Here, we report the development, validation and clinical application of a novel electrochemiluminescence-based ELISA for nitrotyrosine which provides superior sensitivity (e.g. a 50-fold increase in sensitivity compared with one of the tested commercial colorimetric ELISAs). This nitrotyrosine ELISA has the following characteristics: a lower limit of quantitation of 0.04 nM nitrated albumin equivalents; intra- and inter-assay coefficients of variation of 6.5% and 11.3%, respectively; a mean recovery of 106 ± 3% and a mean linearity of 0.998 ± 0.001. Far higher nitration levels were measured in normal human blood cell populations when compared to plasma. Mass spectrometry was used to validate the new ELISA method. The analysis of the same set of chemically modified albumin samples using the ELISA method and mass spectrometry showed good agreement for the relative levels of nitration present in each sample. The assay was applied to serum samples from patients undergoing elective surgery which induces the human inflammatory response. Matched samples were collected before and one day after surgery. An increase in nitration was detected following surgery (median (IQR): 0.59 (0.00–1.34) and 0.97 (0.00–1.70) nitrotyrosine (fmol of nitrated albumin equivalents/mg protein) for pre- and post-surgery respectively. The reported assay is suitable for nitrotyrosine determination in patient serum samples, and may also be applicable as a means to determine oxidative stress in primary and cultured cell populations

    Identification and relative quantification of tyrosine nitration in a model peptide using two-dimensional infrared spectroscopy

    Get PDF
    Nitration of tyrosine in proteins and peptides is a post-translational modification that occurs under conditions of oxidative stress. It is implicated in a variety of medical conditions, including neurodegenerative and cardiovascular diseases. However, monitoring tyrosine nitration and understanding its role in modifying biological function remains a major challenge. In this work, we investigate the use of electron-vibration-vibration (EVV) two-dimensional infrared (2DIR) spectroscopy for the study of tyrosine nitration in model peptides. We demonstrate the ability of EVV 2DIR spectroscopy to differentiate between the neutral and deprotonated states of 3-nitrotyrosine, and we characterize their spectral signatures using information obtained from quantum chemistry calculations and simulated EVV 2DIR spectra. To test the sensitivity of the technique, we use mixed-peptide samples containing various levels of tyrosine nitration, and we use mass spectrometry to independently verify the level of nitration. We conclude that EVV 2DIR spectroscopy is able to provide detailed spectroscopic information on peptide side-chain modifications and to detect nitration levels down to 1%. We further propose that lower nitration levels could be detected by introducing a resonant Raman probe step to increase the detection sensitivity of EVV 2DIR spectroscopy. (Graph Presented)

    A distinct, high-affinity, alkaline phosphatase facilitates occupation of P-depleted environments by marine picocyanobacteria

    Get PDF
    Marine picocyanobacteria are globally important primary producers, a facet facilitated via their ability to proliferate in nutrient impoverished regions of the sunlit ocean including oligotrophic gyres that are expected to expand due to climate change. Phosphorus is a major macronutrient potentially limiting growth and CO2 fixation capacity in such systems. Here, we identify a unique high-affinity phosphatase which in picocyanobacteria is present only in populations that occupy these P-deplete systems. This phosphatase is abundant and highly expressed in these regions, suggesting that genetic capacity exists within these populations to provide resilience to long-term P depletion. Moreover, this phosphatase is widely distributed in both heterotrophic bacteria and eukaryotic algae hinting that such a trait is broadly utilized to access such environments

    Unique reporter-based sensor platforms to monitor signalling in cells

    Get PDF
    Introduction: In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. <p/>Methods: Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. <p/>Findings: We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. <p/>Conclusions: We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters

    Adaptive response to wine selective pressures shapes the genome of a Saccharomyces interspecies hybrid

    Get PDF
    During industrial processes, yeasts are exposed to harsh conditions, which eventually lead to adaptation of the strains. In the laboratory, it is possible to use experimental evolution to link the evolutionary biology response to these adaptation pressures for the industrial improvement of a specific yeast strain. In this work, we aimed to study the adaptation of a wine industrial yeast in stress conditions of the high ethanol concentrations present in stopped fermentations and secondary fermentations in the processes of champagne production. We used a commercial Saccharomyces cerevisiae × S. uvarum hybrid and assessed its adaptation in a modified synthetic must (M-SM) containing high ethanol, which also contained metabisulfite, a preservative that is used during wine fermentation as it converts to sulfite. After the adaptation process under these selected stressful environmental conditions, the tolerance of the adapted strain (H14A7-etoh) to sulfite and ethanol was investigated, revealing that the adapted hybrid is more resistant to sulfite compared to the original H14A7 strain, whereas ethanol tolerance improvement was slight. However, a trade-off in the adapted hybrid was found, as it had a lower capacity to ferment glucose and fructose in comparison with H14A7. Hybrid genomes are almost always unstable, and different signals of adaptation on H14A7-etoh genome were detected. Each subgenome present in the adapted strain had adapted differently. Chromosome aneuploidies were present in S. cerevisiae chromosome III and in S. uvarum chromosome VII–XVI, which had been duplicated. Moreover, S. uvarum chromosome I was not present in H14A7-etoh and a loss of heterozygosity (LOH) event arose on S. cerevisiae chromosome I. RNA-sequencing analysis showed differential gene expression between H14A7-etoh and H14A7, which can be easily correlated with the signals of adaptation that were found on the H14A7-etoh genome. Finally, we report alterations in the lipid composition of the membrane, consistent with conserved tolerance mechanisms

    HOCl-modified phosphatidylcholines induce apoptosis and redox imbalance in HUVEC-ST cells

    Get PDF
    Electrophilic attack of hypochlorous acid on unsaturated bonds of fatty acyl chains is known to result mostly in chlorinated products that show cytotoxicity to some cell lines and were found in biological systems exposed to HOCl. This study aimed to investigate more deeply the products and the mechanism underlying cytotoxicity of phospholipid-HOCl oxidation products, synthesized by the reaction of HOCl with 1-stearoyl-2-oleoyl-, 1-stearoyl-2-linoleoyl-, and 1-stearoyl-2-arachidonyl-phosphatidylcholine. Phospholipid chlorohydrins were found to be the most abundant among obtained products. HOCl-modified lipids were cytotoxic towards HUVEC-ST (endothelial cells), leading to a decrease of mitochondrial potential and an increase in the number of apoptotic cells. These effects were accompanied by an increase of the level of active caspase-3 and caspase-7, while the caspase-3/-7 inhibitor Ac-DEVD-CHO dramatically decreased the number of apoptotic cells. Phospholipid-HOCl oxidation products were shown to affect cell proliferation by a concentration-dependent cell cycle arrest in the G/G phase and activating redox sensitive p38 kinase. The redox imbalance observed in HUVEC-ST cells exposed to modified phosphatidylcholines was accompanied by an increase in ROS level, and a decrease in glutathione content and antioxidant capacity of cell extracts
    corecore