46 research outputs found

    Assessing Restoration Potential of Semi-natural Grasslands by Landscape Change Trajectories

    Get PDF
    Species-rich semi-natural grasslands have rapidly declined and become fragmented in Northern Europe due to ceased traditional agricultural practices and animal husbandry. Restoration actions have been introduced in many places to improve the habitat conditions and increase the area to prevent any further losses of their ecological values. However, given the limited resources and long time span needed for successful restoration, it is essential to target activities on sites having a suitable initial state and where the effects of restoration are most beneficial for the habitat network. In this paper we present a conceptual framework for evaluating the restoration potential of partially overgrown and selectively managed semi-natural grasslands in a moderately transformed agricultural environment in south-western Finland. On the basis of the spatio-temporal landscape trajectory analysis, we construct potential restoration scenarios based on expected semi-natural grassland characteristics that are derived from land productivity, detected grassland continuum, and date of overgrowth. These scenarios are evaluated using landscape metrics, their feasibility is discussed and the effects of potential restoration are compared to the present extent of open semi-natural grasslands. Our results show that landscape trajectory analysis and scenario construction can be valuable tools for the restoration planning of semi-natural grasslands with limited resources. The approach should therefore be considered as an essential tool to find the most optimal restoration sites and to pre-evaluate the effects.</p

    Using auxiliary data to rationalize smartphone-based pre-harvest forest mensuration

    Get PDF
    Accurate mensuration of forest stands for pre-harvest planning will pose high costs if carried out by a professional forester as an on-site evaluation. The costs could be reduced if a person with limited mensuration expertise could collect the required data using a smartphone-based system such as TRESTIMA (R) Forest Inventory System. Without prior information, the field sample with sufficient number of measurement points over the whole stand should be selected, so that the entire variation will be covered. We present and test a rational framework based on selecting the sampling locations according to auxiliary data. As auxiliary variables, we use various spatial data sources indicating forests' structural or spectral variation, as well as previously predicted inventory variables. We construct two variants of sampling schemes based on the local pivotal method, weighted by the auxiliary data, and compare the results to simple random sampling (SRS) with corresponding sample sizes. According to our findings, the benefits of auxiliary data depend on the considered stand, species and timber assortment. The use of auxiliary data leads generally to improved results and up to three times higher efficiency (i.e. lower variance) as compared with SRS. We conclude that the framework of applying auxiliary data has high capabilities in rationalizing the sampling efforts with little drawbacks, consequently providing potential to improve the results with similar sample size and possibility to use of non-specialists for the pre-harvest inventory.Peer reviewe

    Detecting structural changes induced by Heterobasidion root rot on Scots pines using terrestrial laser scanning

    Get PDF
    Root rot, caused by the decay fungus Heterobasidion annosum, damages both below- and above-ground parts of Scots pines (Pinus Sylvestris L.). The diseased pines are often first characterized by deteriorated crowns and they will eventually be killed by the infection, but the process is gradual and difficult to be observed before the symptoms are severe. We tested the applicability of point cloud data produced by terrestrial laser scanning (TLS) for quantifying the structural differences between the healthy and the diseased trees. This approach was applied in a mature pine stand in southern Finland, which was known to be infected by H. annosum. We first scanned the stand using TLS, and thereafter felled the trees for detailed inspection and classification of the infection status. From the TLS point cloud, we estimated i) crosscut areas within the lowest 1 m of the stem, identifying potential deformations initiated by the fungus, ii) degree of crown deterioration, often providing the first visual signs of the infection at the level of individual trees, and iii) crown occupancy and open space around the trees, prone to be altered by the mycelial spread of the fungus between the adjacent trees. The results indicate that differences in both stem dimensions and crown deterioration can be detected between the healthy and the diseased trees. The diseased trees were found to have a more swollen butt, but no irregularities in circularity of the crosscuts were detected. In terms of vertical point distribution, the diseased trees had point accumulations at substantially greater heights, reflecting easier penetration of laser beams and sparsity of the crown. Regarding to crown occupancy, the diseased trees had more open space around their crowns, but difference to the healthy trees was not statistically significant. According to a simple prediction test based on the calculated features, up to 85% classification accuracy of the infection status was reached. This study is the first indication that TLS can successfully be applied for detecting structural changes of Scots pines connected to Heterobasidion root rot. Our results also show evidence that H. annosum causes butt swelling, which has rarely been reported as a symptom for Scots pines

    Mixed linear and non-linear tree volume models with regional parameters to main tree species in Finland

    Get PDF
    The volume models that have been used in Finland for the last 40 years, while generally well thought-out, exhibit an illogical behaviour for small trees. In recent studies, tree stem form was observed to have changed in time and also involve spatial variation attributable to environmental factors. It is yet unclear how the stem taper has actually changed. To overcome these problems, we fitted a completely new set of volume and taper curve models and examined whether this change is attributable to the changes in management and environmental factors rather than to measurement errors in the previously used datasets. For the latter, we added a dataset into the analysis, which was smaller but of higher quality due to the destructive nature of the stem taper measurements. We aim at (1) developing a new non-linear variable form factor volume function that works with trees of all sizes, (2) improving the description of the variation of the stem form in time and space by including temperature sum and soil type as predictors, (3) understanding the changes in the stem form by fitting new taper curve models and (4) improving the statistical properties of the predictions by using mixed model techniques and by addressing the effect of parameter uncertainty. To assess the impact of renewing the models, we (5) predicted the mean volume and its confidence interval with each model for forest inventory data at country level. The results show that the tree stem form has a spatial trend that can be described with the temperature sum. Moreover, the changes in stem form also have a spatial trend, with largest changes in Lapland. The difference is mostly observable in the lowest part of the stem, and it is especially large in the largest pines. We conclude that environmental variables can help to improve national stem taper functions in countries with pronounced environmental gradients

    Improving TLS-based stem volume estimates by field measurements

    Get PDF
    The prediction of tree stem volumes has conventionally been based on simple field measurements and applicable allometric functions, but terrestrial laser scanning (TLS) has enabled new opportunities for extracting stem volumes of single trees. TLS-based tree dimensions are commonly estimated by automatized cylinder- or circle-based fitting approaches which, given that the stem cross-sections are relatively round and the whole stem is sufficiently covered by TLS points, enable an accurate prediction of the stem volume. The results are, however, often deteriorated by co-registration errors and occlusions, i.e., incompletely visible parts of the stem, which easily lead to poorly fitted features and problems in locating the actual treetop. As these defects are difficult to be controlled or totally avoided when collecting data at a plot level, taking advantage of additional field measurements is proposed to improve the fitting process and mitigate gross errors in the prediction of stem volumes. In this paper, this is demonstrated by modelling the stems first as cylinders by only using TLS data, after which the results are refined with the assistance of field data. The applied data consists of various field-measured stem dimensions which are used to define the acceptable diameter estimation limits and set the correct vertical extents for the analyzed tree. This approach is tested using two data sets, differing in the scanning setup, location, and the measured field variables. Adding field data improves the results and, at best, enables almost unbiased volumetric predictions with an RMSE of less than 5%. According to these results, combining TLS point clouds and simple field measurements has the potential to produce stem volume information at a considerably higher accuracy than TLS data alone

    Single-step genomic evaluation of Russian dairy cattle using internal and external information

    Get PDF
    Genomic data are widely used in predicting the breeding values of dairy cattle. The accuracy of genomic prediction depends on the size of the reference population and how related the candidate animals are to it. For populations with limited numbers of progeny-tested bulls, the reference populations must include cows and data from external populations. The aim of this study was to implement state-of-the-art single-step genomic evaluations for milk and fat yield in Holstein and Russian Black & White cattle in the Leningrad region (LR, Russia), using only a limited number of genotyped animals. We complemented internal information with external pseudo-phenotypic and genotypic data of bulls from the neighbouring Danish, Finnish and Swedish Holstein (DFS) population. Three data scenarios were used to perform single-step GBLUP predictions in the LR dairy cattle population. The first scenario was based on the original LR reference population, which constituted 1,080 genotyped cows and 427 genotyped bulls. In the second scenario, the genotypes of 414 bulls related to the LR from the DFS population were added to the reference population. In the third scenario, LR data were further augmented with pseudo-phenotypic data from the DFS population. The inclusion of foreign information increased the validation reliability of the milk yield by up to 30%. Suboptimal data recording practices hindered the improvement of fat yield. We confirmed that the single-step model is suitable for populations with a low number of genotyped animals, especially when external information is integrated into the evaluations. Genomic prediction in populations with a low number of progeny-tested bulls can be based on data from genotyped cows and on the inclusion of genotypes and pseudo-phenotypes from the external population. This approach increased the validation reliability of the implemented single-step model in the milk yield, but shortcomings in the LR data recording scheme prevented improvements in fat yield.Peer reviewe

    Errors related to the automatized satellite-based change detection of boreal forests in Finland

    Get PDF
    Highlights • Forest changes were automatically modelled from multitemporal Sentinel-2 images. • Errors were evaluated based on visually interpreted VHR images. • Extraction of clear-cuts was accurate whereas thinnings had more variation. • Image quality and translucent clouds had most significant effect on errors. • Results were regarded applicable for operational change monitoring.The majority of the boreal forests in Finland are regularly thinned or clear-cut, and these actions are regulated by the Forest Act. To generate a near-real time tool for monitoring management actions, an automatic change detection modelling chain was developed using Sentinel-2 satellite images. In this paper, we focus mainly on the error evaluation of this automatized workflow to understand and mitigate incorrect change detections. Validation material related to clear-cut, thinned and unchanged areas was collected by visual evaluation of VHR images, which provided a feasible and relatively accurate way of evaluating forest characteristics without a need for prohibitively expensive fieldwork. This validation data was then compared to model predictions classified in similar change categories. The results indicate that clear-cuts can be distinguished very reliably, but thinned stands exhibit more variation. For thinned stands, coverage of broadleaved trees and detections from certain single dates were found to correlate with the success of the modelling results. In our understanding, this relates mainly to image quality regarding haziness and translucent clouds. However, if the growing season is short and cloudiness frequent, there is a clear trade-off between the availability of good-quality images and their preferred annual span. Gaining optimal results therefore depends both on the targeted change types, and the requirements of the mapping frequency

    Turvemaiden digitaalinen kartoitus ja turvepeltolohkojen tunnistaminen

    Get PDF
    Maatalouden turvemaiden ilmasto- ja vesistöpäästöjen vähentäminen edellyttää turvepeltolohkojen tunnistamista, mutta maaperätieto ei ole ollut riittävän tarkkaa tähän tarkoitukseen. Raportissa esitellyn työn tavoitteena oli tuottaa tarkennettua paikkatietoa turvemaiden esiintymisestä ja paksuudesta turvepeltolohkojen tunnistamiseksi. Uusi paikkatietoaineisto turvemaiden esiintymisestä ja paksuudesta luotiin hyödyntämällä koneoppimismallinnusta. Mallinnus tehtiin Random Forest -menetelmällä. Turpeen esiintymistä selittäviksi aineistoiksi valmisteltiin 117 kpl koko maan kattavia satelliitti- ja lentoalustoilta mitattuja kaukokartoitusaineistoja ja geologista paikkatietoaineistoa. Koneoppimismallin opettamista ja testausta varten koottiin 3,5 miljoonaa maaperähavaintoa, josta 70 % käytettiin mallin opetukseen ja 30 % mallin riippumattomaan testaukseen. Mallinnuksessa ennustettiin turvepaksuusluokkien ≥ 10 cm, ≥ 30 cm, ≥ 40 cm ja > 60 cm esiintymistä 50 m × 50 m rasteriresoluutiossa ja ennusteet tuotettiin maankäyttömuodosta riippumatta kaikille maa-alueille. Malliennusteiden tarkkuus oli korkea. Turvepaksuusluokat pystyttiin erottelemaan muista maalajeista ja turvepaksuusluokista 89–96 % tarkkuudella. Tarkkuudet olivat korkeimmillaan ohuissa turvepaksuusluokissa ja hieman heikompia paksuissa luokissa. Maatalousmailla vähintään 30 cm paksun turvemaan alaksi arvoitiin 273 000 ha, mikä on noin 11 % maatalousmaa-alasta. Tästä pinta-alasta 73 % turvekerros oli > 60 cm. Saamamme arvio maatalousmaiden turvemaiden (≥ 30 cm) pinta-alasta on 8 600 ha suurempi kuin mitä mittakaavaltaan 1:200 000 maaperäkartasta voidaan arvioida. Peltolohkokohtainen tarkastelu osoitti, että turve-ennusteet mahdollistavat turvealan ja -paksuuden arvioimisen yksittäisillä peltolohkoilla. Esimerkiksi turvepeltolohkot, joilla on vähintään 50 % alastaan ≥30 cm paksu turvekerros, tunnistettiin yli 90 % tarkkuudella. Uusi paikkatietoaineisto Turpeen paksuus 1.0/2023 tarkentaa aikaisempaa tietoa turvemaiden esiintymisestä ja paksuudesta koko maassa. Aineiston luokittelutarkkuus ja alueellinen erottelukyky ovat olemassa olevia maaperäkartta-aineistoja parempia ja sen avulla tunnistetaan aikaisemmin kartoittamattomia turvemaita. Yleistarkkuusmetriikat raportoidaan jokaiselle luokittelulle erikseen ja epävarmuuksien hajautuminen on esitetty Random Forest -puiden yksimielisyyden avulla rasterisolukohtaisesti. Uudet turve-ennusteet tuovat uusia mahdollisuuksia maaperään ja maankäyttöön liittyvien toimintojen suunnittelun, ohjaukseen ja vaikutusten arviointiin, sekä tutkimukseen
    corecore