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Accurate mensuration of forest stands for pre-harvest planning will pose high costs if carried out by a professional
forester as an on-site evaluation. The costs could be reduced if a person with limited mensuration expertise
could collect the required data using a smartphone-based system such as TRESTIMA® Forest Inventory System.
Without prior information, the field sample with sufficient number of measurement points over the whole stand
should be selected, so that the entire variation will be covered. We present and test a rational framework based
on selecting the sampling locations according to auxiliary data. As auxiliary variables, we use various spatial data
sources indicating forests’ structural or spectral variation, as well as previously predicted inventory variables.
We construct two variants of sampling schemes based on the local pivotal method, weighted by the auxiliary
data, and compare the results to simple random sampling (SRS) with corresponding sample sizes. According
to our findings, the benefits of auxiliary data depend on the considered stand, species and timber assortment.
The use of auxiliary data leads generally to improved results and up to three times higher efficiency (i.e. lower
variance) as compared with SRS. We conclude that the framework of applying auxiliary data has high capabilities
in rationalizing the sampling efforts with little drawbacks, consequently providing potential to improve the results
with similar sample size and possibility to use of non-specialists for the pre-harvest inventory.

Introduction
Roundwood procurement for the Nordic forest industry is based
on cut-to-length harvesting, in which the trees are cut to timber
assortments in the forest. The Nordic forestry is characterized by
a high proportion of private forest ownership and, for example,
in Finland as much as 83 per cent of the industrial roundwood
removals came from non-industrial private forests in 2019 (Luke,
2020). Timber transactions are typically based on bids or a cus-
tomer contract with a forest company. From the perspective of
the buyer, pre-harvest information on the species-specific log
length–diameter distribution and quality of the logs are needed.
These are required to determine the bids according to the appli-
cable harvesting methods and demands for the end use.

Information collected for tactical forest management plan-
ning has not been found accurate for this purpose (Haara et al.,
2019; Holopainen et al., 2010; Vergara et al., 2015). Other publicly
available sources for pre-harvest information include thematic
layers from multi-source national forest inventories (MS-NFIs)
(Kangas et al., 2018) and airborne laser scanning (ALS) (Vauhko-
nen et al., 2014; Barth et al., 2015), which may be combined
with harvester data (Barth and Holmgren, 2013; Maltamo et al.,
2019) and bucking simulators (Sanz et al., 2018; Vähä-Konka
et al., 2020), but these data either lack accuracy or feasibility
to have become commonly utilized in wood sourcing. Further

improvements by means of terrestrial/mobile laser scanning or
drones with subsequent data analysis are possible (Liang et al.,
2016; Kotivuori et al., 2020). Locally manoeuvered measurement
devices however rely on an experienced field operator, which
similarly to an on-site evaluation by a wood sourcing professional,
will lead to high mensuration costs. To decrease these costs, one
solution would be to emphasize strategies that enable the collec-
tion of applicable and standardized pre-harvest information by
means of simple tools and relatively low level of expertise. This
would allow, e.g. the non-professional forest owner to perform
the actions needed for on-site data collection.

TRESTIMA® Forest Inventory System (Trestima 2020; later
referred as Trestima), based on employing a mobile application
and smartphone camera for measurements, has been developed
to offer a solution and lower the costs. The application guides the
user to take several photos, which are considered as samples of
the targeted forest. These samples are analyzed by detecting
visible trees and their species using a Bitterlich-type relascope
principle (angle-count sampling) (Bitterlich, 1984; Rouvinen,
2014; Trestima, 2020). Based on the detected trees, basal area
and diameter distribution for each species are calculated on
the stand, which provides sufficient pre-harvest mensuration
data and can be used for further timber procurement planning
(Siipilehto et al., 2016).
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Regardless of the applied strategy or the level of expertise
employed for collecting the pre-harvest data, field evaluation
is slow and prone to errors (Kangas et al., 2004). These errors
derive from either the inaccuracies of the initial measurements,
or the inability of the sample to adequately capture the under-
lying variation. For example, the experience of the surveyor in
allocating the sample to properly cover within-stand variation
as well as include non-dominant species may affect the results
(Laasasenaho and Päivinen, 1986; Haara, 2003; Haara and Korho-
nen, 2004; Islam et al., 2009). As for the Trestima system, the
quality of the results relies on the performance of the underlying
algorithms and requires that an adequate number of samples,
depending on the complexity of the forest structure, is taken
under sufficient visibility. At the moment, a Trestima user can
determine the number of samples in two ways. The first alterna-
tive is to subjectively select a number of sampling locations from
different parts of the stand, relying on the internal performance
measures calculated by the application. These measures inform
the user on the standard errors estimated from the images, but
do not consider the possible variation on areas outside of the
sample photos. The second alternative is to allocate the sample
points in a regular grid form, which may result in a high number
of photos on larger stands and be inefficient in terms of sampling
resources.

One solution to ensure the efficient sampling is to use auxiliary
data, such as MS-NFI or ALS. In this context, on-site data collec-
tion efforts can be narrowed down by rationalizing the sample
selection so that the given sample would cover the variation in
the auxiliary feature space as adequately as possible (Junttila
et al., 2013; Grafström et al., 2014). This relies on the correlation
of auxiliary data with the variables to be measured and aims at a
more representative sample with lower level of randomness and
smaller errors as compared with simple random sampling (SRS)
of similar size (Grafström and Schelin, 2014). Various materials
derived from ALS, satellite images, or enhanced products based
on these data have earlier been used as auxiliary information
for this purpose (Pesonen et al., 2009; Tomppo et al., 2014; Räty
et al., 2018). These data sources can be continuous or classified
variables, as long as they provide information on forest variation
to rationalize the sample selection.

The Trestima system has been tested in Finland both for sam-
ple plot measurements (Vastaranta et al., 2015) and stand-level
inventories (Siipilehto et al., 2016), but without auxiliary data to
guide the sample selection. Smartphone-based measurements
based on Trestima or other software have also been tested in
Russia (Rybakov et al., 2018), Slovenia (Ficko, 2020) and Spain
(Aguilera et al., 2021). For each mentioned country, in addition to
optical remote sensing data sources (aerial and satellite images),
there are regional to national coverages of LiDAR data available
for auxiliary information as reported by Kauranne et al. (2017),
Čeru et al. (2017) and Arias-Rodil et al. (2018), respectively. Even
though the applicability of the proposed methods should be
verified case by case, using auxiliary data for smartphone-based
forest inventory as such is not restricted to the context of our
study, but would be applicable over a wide range of conditions
and locations.

We test the applicability of auxiliary data to assist the Tres-
tima application in a pre-harvest evaluation of mature stands
marked for cutting. The applied auxiliary information is collected

from publicly available remote sensing data sources and used to
constitute a supervised sample selection procedure. The samples
used for Trestima calculation are subsets from a large number
of photos, taken initially in a regular grid design over the whole
analyzed stand. We test three sampling methods, namely, SRS
and two variants of local pivotal method (LPM), which utilize
the auxiliary data in sample selection (Deville and Tillé, 1998;
Grafström et al., 2012). The LPM-based selection is driven by the
underlying variation of the auxiliary data but does not depend on
the data source or its acquisition strategy as such, as long as the
data have relevance for forest mensuration. We assume that LPM
variants will produce more reliable predictions and lower variance
than SRS. The results are evaluated with respect to efficiency
(samples required) as well as correctness of harvesting value and
stem distribution predictions.

Materials and methods
Test sites
The photo-based sampling tests were conducted in July–August
2019 using three stands of mature boreal forest in Finland
(Figure 1, Table 1), having areas between ∼6 and 12 ha and
located in Pohjois-Savo, Etelä-Savo and Päijät-Häme provinces.
In terms of species, evaluation concerned Scots pine (Pinus
sylvestris L.), Norway spruce (Picea abies (L.) H. Karst.), silver birch
(Betula pendula Roth.) and downy birch (Betula pubescens Ehrh.),
of which the latter two were pooled and considered as a single
birch species. Of the three stands, the first one was structurally
the most homogeneous and relatively open, having the lowest
stem count and basal area as compared with the other two
stands. It was co-dominated by Norway spruce and Scots pine
but characterized by the highest proportion of photos with trees
of only single species identified. Stand 2 had considerably more
variation, containing large areas dominated by mature Scots
pines but also dense patches of young Norway spruces, which
were growing principally as understory trees. This heterogeneity
is reflected by the markedly highest stem count and the lowest
proportion of single-species photos of all the stands. Stand
3 had intermediate structural complexity as compared with
the other stands and was dominated mainly by uneven-aged
Norway spruces with scattered trees of other species. In terms of
proportion of single-species photos, basal area, stem count and
total volume, stand 3 was ranked between the two other focused
stands.

Auxiliary data
Auxiliary data sources included two forest-related data sets, ALS
data, and ortho images (Table 2). Forest resource data (FRD) from
the Finnish Forest Centre (Finnish Forest Centre, 2020) and the MS-
NFI data from the Natural Resources Institute Finland (Mäkisara
et al., 2019) are both predicted based on field measurements
and remote sensing data and distributed as 16 x 16 m raster
data sets with matching dimensions and orientation. The first
is intended at supporting management decisions of privately
owned forests, and the latter producing inventory data for all the
forested land. The difference between them is that construction
of FRD utilizes ALS, which is three-dimensional data (3D) whereas
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Smartphone-based pre-harvest forest mensuration

Figure 1 Location of the stands and their borders overlayed on aerial images (map sources: EuroGeographics/UN-FAO, National Land Survey of Finland
2021).

Table 1 General characteristics of the stands, derived from the Trestima results using all the available sample photos (BA = basal area, V = volume,
σ = standard deviation). For single species photos, only species with predicted basal areas of 1 m2ha−1 or more were included in the evaluation.

Stand Size (ha) Photos Single
species
photos (%)

BA; total
(m2ha−1)

BA; σ

(m2ha−1)
Stems
(ha−1)

Total V
(m3ha−1)

Pine V
(%)

Spruce V
(%)

Birch V
(%)

Other V
(%)

1 8.56 300 38.2 22.8 10.1 645 206.8 34.6 56.2 7.2 2.1
2 12.30 460 19.5 32.5 9.51 1380 283.5 70.1 18.3 9.5 2.1
3 5.99 208 26.4 27.5 11.7 688 271.6 20.0 65.8 8.9 5.3

MS-NFI is based only on two-dimensional (2D) data sources,
primarily satellite images. Both data were available from the
targeted stands as updated between 2016 and 2019, and a
set of variables with expected high importance on the sampling
procedure was selected from them.

The two remaining data sets, ALS and ortho images, were both
produced by the National Land Survey of Finland. ALS data had
been acquired in 2010–2012 and ortho images in 2017–2018.
The time gap between the ALS scanning and photographing
was expected to have some effect on the results, but the data
were still regarded applicable for indicating the most important
variation on the studied stands. Variables derived from both ALS
data and ortho images, as described below, were calculated
using the same 16 x 16 m cells as the forest data sets.

The ALS data were scanned at a relatively low density of 0.5
points per m2, and its height values were first normalized to
the ground level using a digital elevation model at 2 m resolu-
tion. A set of the extracted variables, as presented in Table 2,
was determined based on previous forest resource studies in
similar conditions (Gobakken et al., 2015; Nilsson et al., 2017;
Tomppo et al., 2017).

Ortho images, having a ground resolution of 0.5 m per pixel,
had been captured mostly in the spring during leaf-off time due
to their primary use for terrain mapping. Variables calculated
from them included spectral values as well as textural features
according to grey level co-occurrence matrix (GLCM), which were
utilized to describe both spectral and spatial within-stand varia-
tion (Haralick et al., 1973; Packalén, 2009; Tuominen et al., 2014).
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Table 2 Auxiliary variables used in the study.

Data set Producer Type Extracted variables

Forest resource data (FRD) The Finnish Forest Centre Raster - Basal area of pine, spruce and deciduous trees—volume
of pine, spruce and deciduous trees—average age of
pine, spruce and deciduous trees—basal area, volume
and average age of all trees

Multi-source NFI (MS-NFI) Natural Resources
Institute Finland (Luke)

Raster - Basal area of pine, spruce, birch and other deciduous
trees—basal area and volume of all trees—average
diameter, height and age of all trees

Airborne laser scanning
(ALS) data

National Land Survey
of Finland (NLS)

Point
cloud

- Mean, max and standard deviation of the first-of
many and only return z values—ratio of first-of-many
and only returns to all returns—proportion of ground
returns (LAS 2.0 class 2 based on all returns)—proportion
of canopy returns (z > 1.3 m, all returns)—10%, 50%,
75%, 90% and 95% percentiles of all returns’ z values

Ortho images National Land Survey
of Finland

Raster - Mean and standard deviation values of green, red and
near-infrared bands—image textures from grey level
co-occurrence matrices, including correlation, second
moment, entropy, dissimilarity, contrast, homogeneity
and variance

GLCM textures were calculated as a mean value of directions 0◦,
45◦, 90◦ and 135◦.

Photographs
To cover the within-stand variation and provide enough material
for sub-sampling, photographs needed as Trestima input data
were taken throughout the stands in a regular grid design, fol-
lowing the cell size and orientation of the auxiliary data. Figure 2
illustrates the photographing spots on stand 1, and their actual
deviation from the regular grid as recorded in the field by a
smartphone GPS. Photographing spots were set to every second
corner of the auxiliary data cells, i.e. 32 m apart from each
other in cardinal directions, which was considered a suitable
distance according to the assumed visibility within the stands
and easing the match between the sample photos and the
auxiliary data. From each spot, photos were taken towards the
north-east, south-east, south-west and north-west directions,
therefore totalling four photos per spot. This setup resulted in 52–
115 separate spots and 208–460 photos taken from each stand,
respectively, depending on the stand size and shape. Average
time used for photographing was 151–167 seconds per spot,
including transitions.

Trestima processing
Trestima calculates species-wise basal areas for each photo
using a relascope-type approach with multiple basal area
factors, and extracts stem diameters at breast height (DBH) by
proprietary methods with assistance of image orientation at the
moment of photo capture. Then, using the results of the single
photos and further processing algorithms, stem distribution
is produced for the whole stand, indicating the number of
stems divided by species and condensed into DBH classes at
2 cm lags. Stem distribution is in the operative application

Figure 2 Realized locations of the photographing spots (points) as
recorded by the smartphone GPS receiver and directions of single sample
photos (lines), visualized for stand 1 (map source: National Land Survey
of Finland 2021).

additionally smoothed to provide a more realistic outcome,
but this smoothing functionality was disabled in our study to
provide better comparability between the sampling runs. For
the analyses, we used the image-wise basal areas for each
of the detected species as well as the final stand-wise stem
distribution.

Photos were inserted to the Trestima system using subsam-
ples of all the available photos. Sample sizes were defined pro-
portionally to the total number of photos, therefore differing
between the stands but having approximately similar density per
areal unit. The primary sample size on each run was decided to
be 7.5 per cent of all the photos, which still can be considered
as a small enough sampling fraction to reveal the differences
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Table 3 Number of photographing spots and individual photos on different sampling levels (L1–L3).

L1 L2 L3

Stand Spots Photos Spots Photos Spots Photos

1 3 12 4 16 2 8
2 6 24 8 32 4 16
3 9 36 12 48 6 24

between the sampling methods. Thus, each photo in the sample
corresponded to about 0.35 ha of stand area. To better evaluate
the effect of sample size regarding to the different sampling
methods, additional sample sizes were tested with multiplication
factors of 0.5 (i.e. 3.75 per cent of all the photos) and 1.5 (11.25
per cent). The three sampling levels are later referred as L1, L2
and L3, as from the smallest to the largest.

Sample units for selection were whole photographing spots
including four individual photos shot at different directions, which
resulted to the closest match with the targeted sampling lev-
els. This was intended at first, confirming a better inclusion of
different photographing directions in the sample, and second,
enabling selection of spots using averaged values of the auxiliary
variables. It was therefore reducing both the uncertainties related
to photographs (slightly incorrect locations or directions) and
auxiliary data (effects of anomalous pixel values, or inaccuracies
in georectification). All the applied sample sizes, as presented
in Table 3, also fulfilled the recommended minimum number of
photos for the Trestima analysis.

Sampling procedure
Three sampling methods were used: SRS with no assistance
of auxiliary variables, and LPM with equal inclusion probabili-
ties, which was applied with and without optimization. For each
stand and sampling level, 3000 SRS samples were first gen-
erated to calculate the reference values for evaluation, as no
field-measured reference data was available. This procedure was
based on the assumption that the applied Trestima algorithms
depend partially on the number of images and, therefore, com-
parison of the results is unbiased only within a similar sample
size.

LPM targets to a sample, in which the distributions of auxil-
iary variables in the chosen sample and the whole population
are similar in all dimensions of the auxiliary data. The sample
selection in LPM is performed by promoting and impeding similar
population units in respect to auxiliary data. For the two LPM vari-
ants, separate runs were performed for all the individual auxiliary
data sets as well as using a combination of them, thus permitting
evaluation and comparison of potential differences between the
auxiliary variables. Results were generated by running Trestima
calculations 1000 times for each stand, sampling level, applied
method and auxiliary data source.

LPM sampling without optimization refers to picking a single
LPM-based sample to initialize a Trestima calculation. For opti-
mized version, however, S = 2000 LPM samples were generated
prior to a Trestima run, and only the best sample according to

the following criterium was chosen to be used:

min
S

⎛
⎝

a∑
j=1

3∑
i=1

∣∣∣Q(p,j)
i − Q(s,j)

i

∣∣∣
⎞
⎠ , (1)

where s is sample, p is population, j is a dimension of auxiliary
data, Q is a quantile of auxiliary data distribution. In the measure
only quantiles i = 1,2,3 corresponding to 25 per cent, 50 per
cent and 75 per cent of cumulative distribution, respectively,
were considered. The best sample had the smallest absolute
distance in auxiliary data distribution from the population in
chosen cumulative points (Eq. 1). In addition, given the limited
number of population units and therefore potential for picking
similar samples repeatedly, the chosen sample for optimized LPM
was only accepted if it was not selected before.

For LPM-based selection, dimensionality of the auxiliary space
was reduced by selecting four stand-specific variables for each
set of runs. These variables were expected to correlate with the
inter-stand forest variation but not significantly with each other.
Variable selection was carried out with the following procedure:

1. The Trestima analysis for the given stand was run using all the
available sample photos. This resulted in photo-wise predic-
tions of basal areas for all the detected species, which were
summed for each photographing spot (four photos taken to
different directions) at the levels of individual species, as well
as the total basal area.

2. Correlations between the predicted basal areas and the aux-
iliary values of interest, averaged from four 16 x 16 m pixels
surrounding the spot, were calculated.

3. Auxiliary variables were arranged starting from the strongest
absolute correlation with any of the basal area strata, which
determined their importance order.

4. Four most important individual variables were selected, and
their cross-correlations were calculated.

5. If any of the absolute correlations exceeded a value of 0.75, or
several selected variables were referring to the same species
(concerning the two forest-related data sets), the variable
among these with smallest initial correlation with Trestima
basal areas was dropped out and replaced by the next one
on the importance order.

This procedure was continued until the conditions were sat-
isfied, or there were no more variables left to replace. The fifth
LPM variant, i.e. combination of the auxiliary data sources, was
constructed similarly with exception that the selected variables
always included one from each of the four initial data sets, and
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Table 4 Selected variables at their importance order (1–4) for each stand and auxiliary data set (BA = basal area, V = volume). Data sets, their
abbreviations and details on the single variables are presented in Table 2.

Stand Data set Variable 1 Variable 2 Variable 3 Variable 4

1 FRD BA pine BA spruce BA total V total
MS-NFI Average diameter BA birch BA spruce BA other deciduous trees
ALS Mean of first

return z values
Maximum of first
return z values

Proportion of
first returns

10% percentile
of z values

Ortho
images

Mean value of
red band

Standard deviation
of near-infrared band

Contrast Second moment

Combined BA pine (FRD) Mean of first
return z values (ALS)

V all trees
(MS-NFI)

Mean value of
red band (Ortho)

2 FRD V pine BA spruce BA deciduous trees BA total
MS-NFI Average diameter BA birch BA spruce BA other deciduous trees
ALS Mean of first

return z values
Proportion of
first returns

10% percentile
of z values

90% percentile
of z values

Ortho
images

Mean value of
red band

Standard deviation
of near-infrared band

Entropy Correlation

Combined BA spruce (FRD) Mean of first
return z values (ALS)

BA birch
(MS-NFI)

Entropy (Ortho)

3 FRD BA pine V spruce BA total V total
MS-NFI Average diameter BA birch BA spruce BA pine
ALS Mean of first

return z values
Maximum of first
return z values

Proportion of
first returns

75% percentile
of z values

Ortho
images

Standard deviation
of green band

Standard deviation
of near-infrared band

Variance Contrast

Combined V spruce (FRD) Mean of first
return z values (ALS)

BA pine
(MS-NFI)

Contrast (Ortho)

potential replacements were made only within the respective set.
The selected variables for each stand and auxiliary data set are
presented in Table 4.

Evaluation of the results
After completing the sample based Trestima runs, the results
were evaluated primarily using two different strategies, which
focused on indicating the differences between the SRS and LPM
sampling methods. First, stem distributions of each stand, sam-
pling level, sample selection method and applied auxiliary data
(for LPM-based samples) were compared for all the focused
tree species. This was based on modified Reynold’s error index
(EI), proposed by Reynolds et al. (1988) and scaled to relative
frequencies by Packalén and Maltamo (2008). Index calculation
for one Trestima run was as follows:

e =
k∑

i=1

0.5

∣∣∣∣∣
fi

N
− f̂i

N̂

∣∣∣∣∣ , (2)

where fi and f̂i are the reference and predicted number of stems
in a single DBH class, N and N̂ reference and predicted num-
ber of stems over all the DBH classes, and k is the number of
classes, respectively. Multiplying the frequency differences by 0.5
will scale the result between 0 (perfect fit) and 1 (totally non-
overlapping distributions). It should, however, be emphasized

that the applied EI formula compares only the similarity of rela-
tive distributions but will not indicate potential differences in the
total stem counts.

To make the evaluation strategy less susceptible for focusing
on minor distribution differences, initial reference distribution
DBH classes at 2 cm lags were combined to larger 6 cm lags.
Then, the final EI result was calculated by averaging the value e
of all the Trestima runs (n = 1000). To calculate the EI value for
SRS, only a subset of 1000 first runs out of 3000 (as used for
calculating the reference values) were applied to correspond to
the size of the LPM sample. In case Trestima had predicted no
stems of the focused tree species, therefore making the second
denominator zero, a value of 1 was assigned to the respective
e. In addition to calculating EI values separately for the three
species, distributions were also compared similarly at the level
of all the stems.

The second evaluation strategy focused on the monetary
value of the stand, i.e. indicating the correctness of the detected
stems with emphasis on large trees, having the highest impor-
tance for harvesting plans. As the applied Trestima results did not
include tree heights, the sample tree data bank from the Finnish
National Forest Inventory was used. First, we estimated taper
curve for each NFI sample tree, using species, field-measured
DBH and tree height as regressors (Laasasenaho, 1982). The taper
curve was applied to calculate the volumes of saw log (at least
400 cm long with diameter of 15 cm or more) and pulpwood (at
least 200 cm long with diameter of 7 cm or more) assortments
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of the respective tree. Then, species-wise relationships between
the DBH and the two assortment volumes were modelled using
cubic splines. These spline-based models were further applied
to estimate the assortment volumes of a single tree for each
Trestima-detected stem distribution class by using the respective
mean diameter. Finally, stem distributions deriving from Trestima
runs were converted to assortment-wise and total volumes of the
stand by multiplying these values by the number of stems and
prices paid of the respective timber assortments in 2018 (Luke,
2019). In addition to Scots pine, Norway spruce and the two birch
species (also combined in the statistics), Trestima recognized a
small number of other broadleaved trees. For them, the saw log
and pulpwood volumes were calculated similarly to birch, and
with price corresponding to 50 per cent value of birch derived
from their low industrial importance.

Reference monetary values for each timber assortment and total
stand value were averaged from all the SRS runs (n = 3000).
Comparative statistics between the SRS and different LPM-based
sampling methods were calculated using relative efficiency (RE),
derived from mean-squared error (MSE):

REi = MSEsrs

MSEi
, (3)

where MSEsrs and MSEi are the MSEs of 1000 first SRS-based runs
and the LPM samples under investigation, respectively. Further,
to evaluate the significance of differences between the three
methods, the RE values of each stand and sampling level were
compared using t-tests. Evaluation between the LPM and SRS
strategies was based on one sample t-tests, examining whether
the RE values of the respective LPM variant differed significantly
from 1 (i.e. the level of SRS regarding to MSEs, as derived from
Equation 3). All the RE values of different timber assortments
and auxiliary data sets were included with equal weights, with
intention of evaluating the methods as such rather than their
ability to find high-value timber products in this particular case,
or performance of any single auxiliary data source. To evalu-
ate the differences of the two LPM variants, two-sample t-tests
were applied to compare their means. All the significances were
calculated as one-tailed tests, expecting RE values to increase
SRS < non-optimized LPM < optimized LPM.

In addition to calculating EI and RE, distribution of monetary
values over all the Trestima runs were visualized as histograms
for two selected cases.

Results
The EI values (Figure 3) varied principally according to the tree
species abundance and the applied sample size. Errors were
always highest for birch, which was the least common species
with 7.2–9.5 per cent proportion depending on the stand, and
lowest for either Norway spruce or Scots pine depending on
their dominance. Variation in the absolute levels of EI values
between the stands derived largely from the number of photos
used in the Trestima calculation, as indicated by the total stem
distribution (Figure 4). The results of using optimized LPM sam-
pling were characterized by relatively high variation depending on

the applied auxiliary data, which extended the EI range to both
improving and deteriorating directions as compared with SRS.

RE (Table 5) indicated improvements initiated by the LPM
methods, i.e. use of auxiliary data, which varied considerably
between the targeted stands, focused timber assortments, and
sampling levels, respectively. Generally, auxiliary data improved
the evaluation of stand value (RE > 1) and in several cases more
than halved the sample-based variance (RE > 2). On the contrary,
however, not all the timber assortments were benefitting from
applying the LPM sampling (RE ≈ 1), and part of the results
were even deteriorated as compared with SRS. For most of
the evaluated individual timber assortments, optimized LPM
performed better than non-optimized. The reference values had
some variation depending on the sampling level due to their
calculation separately for each sample size. As averaged from
n Trestima runs, the reference level appeared to stabilize after
approximately n = 500–1000 with relatively little oscillation and
was therefore regarded as a suitable value for comparison at the
given sample size.

The assistance of auxiliary data was more obvious on stands
1 and 3 as compared with stand 2. In terms of the forest char-
acteristics, stand 2 differed from the other two sites by having
the largest total area and the highest stem count, in addition to
be the only one dominated by Scots pine. Stand 2 also appeared
to benefit from LPM mainly at sampling level 1 whereas the two
other stands rather indicated improvements at proportionally
larger sample sizes. It should however be noted that the absolute
sample sizes (i.e. the number of individual photos) for stand
2 were also larger compared with other stands, e.g. n = 16 at
sampling level 1 as compared with n = 12 for stand 1 and n = 8
for stand 3, respectively. The highest RE values on stand 2 were
also mainly concentrated on the logs of non-dominant species
(Norway spruce and birch), which were not further reflected to
the total value of the stand. In general, total value will not
average the single assortments due to its dependence on correct
detection of the high-value assortments but lower sensitivity for
species distribution. For stands 1 and 3, LPM sampling improved
both the evaluation of most individual timber assortments as
well as the total stand value. On average, evaluation of Norway
spruce log was the most successful among the focused timber
assortments and the only one reaching RE values of over 3, but
differences between the stands were however large.

Regarding to the auxiliary data sources, highest average RE
values were associated to combined use of the applied data
sets, which was closely followed by the FRD by the Finnish For-
est Centre. They were also the only data sets where features
were derived from both 2D (spectral/textural) and 3D (height)
information. Of the remaining data sets, ALS performed slightly
better than MS-NFI, and the weakest of the single auxiliary data
sources were ortho images. Within single stands, most of the
data sets had however mixed performance, thus generally lack-
ing the potential to improve the results of all the individual timber
assortments.

Based on RE, the differences between the sampling meth-
ods were significant (Table 6). For every stand and sampling
level, applying any LPM-based sampling method instead of SRS
improved efficiency values highly significantly. In most cases,
optimized LPM strategy also outperformed the non-optimized
version significantly (P < 0.05), with exception of sampling level
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Figure 3 Reynold’s error index statistics for all the stands, sampling levels, and targeted tree species. In each subplot, the error index value for SRS
is presented as a black dot, and the ranges of LPM values with different auxiliary data sources as bars, including both non-optimized (blue, left) and
optimized (red, right) sampling strategies.

1 on stand 3, which had the smallest absolute number of photos
of all the samples.

To understand the differences between the sampling methods
and effects of the auxiliary data, two common cases of sample-
based value distributions are presented in Figure 5. Case A (left) is
the targeted behaviour of the LPM method as compared with SRS,
presenting the total value of stand 1 at sampling level 2. In this
case, LPM works efficiently with assistance of ALS in order to nar-
row down the sample variation and concentrate more samples

close to the reference value. This tendency is particularly notable
with the optimized LPM, which shortens the distribution tails and
reduces the likelihood of strong under- or overestimates of the
stand value, resulting in a RE of 2.90. On the contrary, case B
(right) receives little help from applying the LPM-based sampling.
It presents the Scots pine log value on stand 2 at sampling level
2, and indicates a typical case associated with low RE: histograms
between the different sampling methods are relatively similar,
and LPM optimization shifts the distribution mean further away
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Figure 4 Reynold’s error index statistics for the total stem distribution, presented for all the stands as a function of the number of individual photos.
Error index values based on SRS are presented as solid lines, and ranges of the respective LPM values (both non-optimized and optimized) with different
auxiliary data sources as shaded areas.

from the reference value. As this consequently increases the MSE,
RE drops to 0.85. Many of the low RE values were associated to
overestimated stem count rather than errors related to diameter
distribution.

Discussion
Prediction of timber assortments in this study follows the widely
applied scheme in Finland, i.e. first predicting the diameter distri-
bution of trees, and then converting representative trees of the
distribution into tree-wise timber assortments with assistance
of taper curve functions (Kangas and Maltamo, 2002). The use
of the Trestima application will make this procedure effortless
for a user, as collecting the required data needs no specific
measurement skills but only taking photos using a smartphone
according to easy-to-follow instructions. If no auxiliary data are
used, the representativeness of the sample photos is ensured by
the spatially dispersed selection of photographing locations. As
forest stands are generally relatively small and homogeneous in
Finland, even a random sample would often lead to sufficiently
accurate results. But in some cases, as presented in this study,
these predictions can be biased, and auxiliary data can assist
in lowering the variance of estimates. Given that photographing
locations in our study were predetermined and not following
Trestima instructions regarding to the selection of sites or shoot-
ing directions, the actual Trestima results are not likely to be as
dispersed as the values presented, e.g. in Figure 5. The calculated
statistics, however, are expected to be applicable over various
sample selection procedures, given that the primary challenge
is related to picking an unbiased sample to cover all the essential
stand variation.

As shown by the RE statistics, application of auxiliary data
can substantially improve the sampling procedure and ensure
selecting a more representative sample as compared with SRS.
RE-related advantages of LPM sampling may not be gained at
very small or large sample sizes, but rather at intermediate

levels which enable covering the most essential variation without
allocating resources for repetitive sampling. This tendency would
however be expected to be shifted toward larger sample sizes
with increased within-stand variation, given the larger range of
conditions needed to be covered for gaining an unbiased sample.
Regardless of the sampling level, LPM optimization distributes the
sampling locations more efficiently according to the local vari-
ation, therefore gaining higher RE. Differences of the efficiency
between the three stands are likely to be connected to their
structural characteristics as well as the evaluation strategy by
monetary value. The best results for stand 1 would be explained
by its relatively homogeneous composition of mature Scots pine
and Norway spruce without widespread undergrowth, both of
which having high importance for timber and pulp assortments.
Considerably worse RE of stand 2, however, are likely to derive
from dense concentrations of young Norway spruces, which may
hinder Trestima’s image-based evaluation and initiate structural
variation within the stand. These Norway spruces however have
low importance in terms of monetary value, which further leads
to unimproved or even deteriorated RE of LPM-based sampling as
compared with SRS.

It should be acknowledged that the results presented in this
study are based on DBH distributions derived by means of image
analysis and pre-existing data on their relationships with other
stem dimensions but lacking independent data on these factors.
This includes various uncertainties related both to underlying
data as well as its processing. Siipilehto et al. (2016) found
Trestima-based predictions accurate and unbiased as compared
with a number of other prediction alternatives, but prone to
underestimation of diameters and basal areas, particularly if a
small number of photos was used. The study setup of Siipilehto
et al. (2016) is however not comparable with our study due to
fundamentally different photo sampling and modelling. Further,
our study ignores technical tree quality. Recently, Vähä-Konka
et al. (2020) compared timber assortment estimates, derived
directly from the FRD data and aggregated to the stand level,
against actual logging data recorded by harvesters. They found
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Table 5 RE statistics and reference (Ref.) monetary values for all the stands, sampling levels (L1–L3) and auxiliary data sets, divided by species-wise
timber assortments as well as indicated as total value. Minor quantities of other broadleaved species are not individually presented but included in
the total value, thus not equalling the sum of single assortments. Data sets and their abbreviations are presented in Table 2.

(Continued)
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Table 5 Continued.

Table 6 RE of different timber assortments (Table 5), condensed as mean values for each stand, sampling level (L1–L3) and LPM variant. The P-values
derive from one-tailed t-tests, expecting RE values to increase SRS < non-optimized LPM < optimized LPM.

Non-optimized LPM Optimized LPM

Mean RE value Difference to
SRS (P-value)

Mean RE value Difference to
SRS (P-value)

Difference to non-optimized
LPM (P-value)

Stand 1 L1 1.155 <0.001 1.431 <0.001 0.001
L2 1.276 <0.001 1.585 <0.001 0.001
L3 1.314 <0.001 1.505 <0.001 0.015

Stand 2 L1 1.063 <0.001 1.459 <0.001 <0.001
L2 1.111 <0.001 1.219 <0.001 0.015
L3 1.121 <0.001 1.191 <0.001 0.019

Stand 3 L1 1.145 <0.001 1.126 <0.001 0.778
L2 1.224 <0.001 1.703 <0.001 <0.001
L3 1.281 <0.001 1.535 <0.001 0.003

the data otherwise reliable but to overestimate particularly the
sawlog volume. This result was mainly because of inability to con-
sider tree technical quality, affecting the factual recovery of the
timber assortments and related to poor quality reduction models
(Karjalainen et al., 2019). The measures for timber assortments
may further depend on the applied bucking parameters which
come from the contemporary needs of the sawmills (Malinen
et al., 2001; Malinen et al., 2006). The evaluation of theoretical
assortment values as presented in this paper, in contrast, rather
promotes the role of auxiliary data in covering the essential
stand variation especially with respect to the dominant trees that
contribute mostly to the sawlog volume and timber value.

In terms of the EI values, LPM-based sampling strategies
appear to contribute only to relatively minor improvements
(Figures 3 and 4). In addition, the use of optimized LPM leads
to high variation depending on the applied auxiliary data, which
may partially derive from the applied precondition of accepting
only samples not selected before. The apparently low LPM
performance as compared with SRS may however derive from
a few important reasons. First, as there was no exact validation
data for the studied forest stands, we used the Trestima results as
the reference values. While this was the most applicable strategy
for our study, it is also vulnerable to Trestima-based prediction
errors and potential non-detections. A particular problem is
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Figure 5 Two case distributions of sample-based total monetary values (n = 1000) and their RE values using the three sampling methods, i.e. SRS and
two LPM variants. Reference value in each distribution is indicated by a black horizontal line.

caused by younger and denser parts of the stand, which may
be often included in the LPM samples, but cause problems for
reliable image-based detection. Focusing sample selection on
these locations, which are likely to contain higher proportion of
problematic images and non-detected trees, will not emphasize
the potential advantages of LPM. Second, comparing the stem
distributions with equally weighted DBH classes will not separate
whether a given sample lacks a tree of 4 cm or 40 cm, which
however makes a great difference in terms of tree volume
and harvesting opportunities. And third, the applied calculation
methodology of EI values was focused on relative distribution
differences instead of absolute ones. That is, a correctly shaped
distribution with a highly erroneous stem count would gain a
lower error as compared with a skewed distribution with a correct
number of stems. For these reasons, RE statistics with capabilities
of reacting to the number and size of the stems should be
emphasized from the perspective of the focused application.

Of the auxiliary data sets used for LPM sampling, the one
combining all the data sources provided generally the highest
improvement. Its construction was based on selecting one
variable from each data source, which may not ensure the
optimal performance but however offers an importance ranking
through the selection order. This order was similar for all the
stands, i.e. FRD–ALS–MS-NFI–Ortho (see Table 4), which is a
logical result. Auxiliary sources containing 3D data (FRD and ALS)
instead of applying only 2D-derived information (MS-NFI and
Ortho) improve the sampling efficiency most. Prediction of the
FRD data includes ALS data, ortho images and extensive field
measurements, which makes them the most comprehensive
single data source applied in this study, but at the cost of

expensive and tedious production. ALS-derived information will
primarily provide data on tree heights, which however correlates
strongly with their volumes and monetary values, whereas
spectral 2D data assists in detecting differences in species
composition. Similarly, field plot data have been applied in the
prediction of the MS-NFI data set, but they are primarily based
on optical satellite images and lack a 3D data source, which lead
to a poorer performance. This also corresponds to the results of
Kankare et al. (2015) and Vauhkonen (2018), which emphasize
the better performance of ALS-derived features to predict forest
biophysical attributes as compared with 2D-derived MS-NFI.
Further, the applicability of ALS for guiding the sampling design
has been proved in several other studies (Pesonen et al., 2009;
Grafström and Ringvall, 2013; Yang et al., 2019).

Regarding to the importance of single FRD variables, those
related to Scots pine and Norway spruce—the two main tree
species—are always the most significant. For MS-NFI, however,
stronger correlation of average diameter instead of single species
could be due to its higher degree of spectral robustness or spatial
autocorrelation, given the differing background data of MS-NFI
as compared with FRD. This refers particularly to the inclusion
of ALS in the construction of FRD, which will not only provide
3D information but also enhances capturing the actual variation
within the focused raster cell. As compared with this, MS-NFI is
more vulnerable to suffer from variable image quality as well
as non-matching resolution and pixel borders between the input
and output data. Inaccuracies of the MS-NFI data at a single
pixel level are also increased by its optimization to minimize
the variance and RMSE of pixel values, which does not always
retain the variation of field variables (Katila and Tomppo, 2001;
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Katila, 2006; Tomppo et al., 2008). For using ALS data alone,
the most important output appears to be related to the aver-
age tree height (mean of first-or-many or only return z values)
whereas orthophotos emphasize species distribution (spectral
data instead of textural information). The ortho data however
have generally relatively poor performance, deriving assumedly
from image acquisition in the spring, i.e. during leaf-off time and
before growing season, which deteriorates their applicability as
auxiliary data source.

Conclusions
Distributing the Trestima photo locations evenly throughout the
stand or selecting diverse spots subjectively may provide rea-
sonably good pre-harvest information based on simple tools
and no particular requirements for forest mensuration skill. Such
strategies are however vulnerable to unintentional bias due to
poorly or excessively sampled strata, particularly if the sam-
pling locations are purposively selected. According to our results,
various freely available spatial data sources can be applied as
auxiliary data to enable objective and rational sampling design
and facilitate efficient allocation of inventory resources. Auxiliary
variables concentrated on structural variation, i.e. containing 3D
information are more efficient as compared with 2D spectral
data, but combining various auxiliary data sources will assist in
optimizing the performance. Moreover, auxiliary data can also
assist better detection of marginal strata, which may have signif-
icance depending on the application. The best solution depends
on the stand and its primary sources of variation (for example,
age or species composition), but gaining a RE of 1.5–2 as com-
pared with SRS appears to be generally feasible.
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