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Abstract
Genomic data are widely used in predicting the breeding values of dairy cattle. 
The accuracy of genomic prediction depends on the size of the reference popula-
tion and how related the candidate animals are to it. For populations with limited 
numbers of progeny-tested bulls, the reference populations must include cows 
and data from external populations. The aim of this study was to implement state-
of-the-art single-step genomic evaluations for milk and fat yield in Holstein and 
Russian Black & White cattle in the Leningrad region (LR, Russia), using only a 
limited number of genotyped animals. We complemented internal information 
with external pseudo-phenotypic and genotypic data of bulls from the neighbour-
ing Danish, Finnish and Swedish Holstein (DFS) population. Three data scenar-
ios were used to perform single-step GBLUP predictions in the LR dairy cattle 
population. The first scenario was based on the original LR reference population, 
which constituted 1,080 genotyped cows and 427 genotyped bulls. In the second 
scenario, the genotypes of 414 bulls related to the LR from the DFS population 
were added to the reference population. In the third scenario, LR data were fur-
ther augmented with pseudo-phenotypic data from the DFS population. The in-
clusion of foreign information increased the validation reliability of the milk yield 
by up to 30%. Suboptimal data recording practices hindered the improvement 
of fat yield. We confirmed that the single-step model is suitable for populations 
with a low number of genotyped animals, especially when external information 
is integrated into the evaluations. Genomic prediction in populations with a low 
number of progeny-tested bulls can be based on data from genotyped cows and on 
the inclusion of genotypes and pseudo-phenotypes from the external population. 
This approach increased the validation reliability of the implemented single-step 
model in the milk yield, but shortcomings in the LR data recording scheme pre-
vented improvements in fat yield.
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1   |   INTRODUCTION

Genomic information has been successfully used in 
predicting dairy cattle breeding values during the last 
decade (VanRaden, 2020). In the original genomic evalu-
ation approach, breeding values of the candidate animals 
were predicted using information derived from the gen-
otyped animals of the reference population (Meuwissen 
et al., 2001). Multiple studies have shown that the reliabil-
ity of genomic prediction depends on its size and structure 
(Goddard, 2009; Goddard & Hayes, 2009). Large commer-
cial dairy breeding schemes initiated their reference pop-
ulations by genotyping all progeny-tested bulls and some 
elite cows. However, this approach is challenging in small 
populations because only a few progeny-tested bulls may 
be available, and historical DNA samples of the bulls are 
not available.

The obvious recipe to attain sufficient prediction 
accuracy in small populations with a limited num-
ber of progeny-tested bulls is to increase the reference 
population with genotyped cows (Ding et  al.,  2013; Li 
et  al.,  2014). This approach increases genotyping costs 
because the low reliability of estimated breeding value 
(EBVs), typical to cows, requires a larger number of gen-
otyped animals to gain the same accuracy as when using 
progeny-tested bulls that typically have highly reliable 
EBVs (Daetwyler et al., 2008). In addition, the heritability 
of a trait affects the optimal size of the reference popula-
tion; the lower the heritability, the more genotyped ani-
mals are needed in the reference population (Goddard & 
Hayes, 2009). Furthermore, genomic prediction accuracy 
depends on the model used in genomic prediction. The 
single-step genomic BLUP (ssGBLUP) approach (Aguilar 
et al., 2010; Christensen & Lund, 2010) may yield more 
accurate genomic predictions than the two-step approach 
when the population has a limited number of genotyped 
animals (Christensen et al., 2012; Song et al., 2019).

Low genomic prediction reliability in a population 
with a limited number of genotyped and progeny-tested 
animals can be enhanced by including data from exter-
nal sources (Přibyl et al., 2013; VanRaden, 2012). Thus, a 
joint reference population can be created where countries 
benefit uni- or bilaterally from the data sharing. Several 
reported examples of EBVs and genomic data exchange 
between countries have shown significant increases in 
the reliability of genomic predictions (Jorjani et al., 2012; 
Lund et  al.,  2011; Ma et  al.,  2014). Even though several 
countries routinely make joint traditional and genomic 
evaluations (e.g. Denmark, Finland and Sweden) (Lidauer 
et al., 2015), most dairy evaluation systems are unwilling to 
share recorded data from cows and will only disseminate 
EBV from internal evaluations. In such circumstances, 
the inclusion of foreign bull EBVs with corresponding 

reliabilities into national or internal reference popula-
tions has become a common practice (Přibyl et al., 2013; 
Vandenplas et al., 2014). EBVs of foreign genotyped bulls 
can be attained from the multi-trait across-country evalu-
ations (MACE, Interbull, Uppsala, Sweden).

Several methods to include external EBV into internal 
evaluations have been developed (Bonaiti & Boichard, 1995; 
Luštrek et al., 2021; Přibyl et al., 2013; Täubert et al., 2000; 
Vandenplas et  al.,  2014; VanRaden,  2001, 2012). 
Vandenplas et al. (2014) described a unified approach for 
combining external EBV with internal data and pedigree 
information with further extension to genomic informa-
tion (Vandenplas et  al.,  2017). The blended information 
from multiple sources was shown to be free from double 
counting the internal information. The method avoids the 
overestimation of reliabilities and can be used in genomic 
prediction models to include external data.

Contemporary comparison is the current official dairy 
bull evaluation method in Russia, but state-of-the-art 
animal model evaluations have already been proposed 
(Kudinov et al., 2017, 2018). In 2016, the Leningrad Region 
(LR) (Figure  1) Committee on Agriculture and Fishery 
(Saint Petersburg, Russia) initiated a research and devel-
opment project to apply genomic evaluations of produc-
tion traits using BLUP methodology. The region's largest 
dairy cattle population consists of animals with an admix-
ture of Holstein (HOL) and Russian Black & White (RBW) 

F I G U R E  1   Map. The northeastern part of the Baltic sea. The 
Leningrad region of the Russian Federation is highlighted with 
a dark grey colour (the plot was created in R with the ggplot2 
software package, Wickham, 2016) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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breeds kept in 49 herds, with an average herd size of ap-
proximately 1,000 cows (Kudinov et al., 2018). Because the 
number of progeny-tested bulls was low genotyping cows 
was the only way to increase the reference population. 
During the period 2015–2017, the starting pool of geno-
typed animals was created from 427 bulls and 1,080 cows. 
A small number of reference animals expectedly would 
limit genomic prediction reliability for candidate animals. 
Thus, it was proposed to improve reliability when includ-
ing genomic and pseudo-phenotypic information from 
the neighbouring Danish, Finnish and Swedish Holstein 
(DFS) populations.

The aim of this study was to test the feasibility of 
ssGBLUP for HOL and RBW cattle in the LR with only a 
small number of genotyped cows and bulls. We also tested 
the effect of including genomic and pseudo-phenotypic 
information from HOL bulls from DFS on the prediction 
ability of the genomic model. Single-step genomic eval-
uations were computed using three scenarios: (a) phe-
notypes and genotypes of LR animals only, (b) including 
additional bull genotypes from the DFS and (c) further 
adding external MACE EBVs at the DFS scale.

2   |   MATERIALS AND METHODS

2.1  |  Leningrad region data

Phenotypic data, as described in Kudinov et al. (2018), in-
cluded 363,833 records of 305 days of milk and fat yields 
from 159,069 highly related HOL and RBW cows in 49 
breeding herds. Some animals had recorded up to the fifth 
lactation. The pedigree included 221,001 animals born be-
tween 1960 and 2015. For variance component estimation, 
the data were truncated to include records from the first 
three lactations only due to the small number of records in 
later lactations. Correspondingly the pedigree was pruned 
to only include informative animals for the truncated data. 
The final data included 319,509 observations and 206,356 
pedigree animals.

2.2  |  Nordic data

The full ancestral pedigree was traced for bulls present in 
both the LR and the joint Nordic cattle genetic evaluations 
(NAV; Denmark, Finland, Sweden). The information of 
the 486 bulls was extracted from MACE EBVs published 
by Interbull in December 2018 at the NAV scale. The 
reliabilities of MACE EBV and values of the LR model 
heritabilities were used to derive effective daughter con-
tributions (EDC) using reverse reliability estimation, as 

described in Taskinen et al. (2014). Using the calculated 
EDC and full pedigree information, the MACE EBVs were 
converted into deregressed daughter performances (DRP) 
using a matrix deregression procedure (Jairath et al.,1998; 
Strandén & Mäntysaari, 2010).

2.3  |  Genotypes

The LR data included single nucleotide polymorphism 
(SNP) marker genotypes from 1,080 cows and 427 
bulls provided by repositories of the Russian Research 
Institute of Farm Animal Genetics and Breeding and 
LLC Laboratory Genome (Saint-Petersburg, Russia). Both 
Illumina BovineSNP50v2 and IDBv3 arrays (Illumina, 
San-Diego, USA) were used for genotyping. Genotyped 
cows were from 13 LR herds. The average (SD) number of 
samples per herd was 82 (21). The DFS data had 414 bull 
genotypes from Illumina BovineSNP50 chip provided by 
NAV. The DFS genotypes were imputed and had passed 
quality control in the official NAV HOL genomic evalu-
ations (https://www.nordi​cebv.info/). The LR and DFS 
genotypes were synchronized to have identical reading 
patterns (i.e. coding). Imputation was performed to unify 
genotypes and fill-in missing markers. Quality control 
of genotypes was performed using the following criteria: 
call rate >95% and minor allele frequency >5%. After pro-
cessing 43,194 SNP markers remained for the genomic 
prediction.

2.4  |  Validation of model fit

Two reduced data sets were created for calculating the 
validation reliability and bias of genomic enhanced breed-
ing values (GEBV). For bull validation, the milk and fat 
records from the last four production years (2012–2015) 
were removed from the data, as described in Mäntysaari 
et al. (2010). An exception was made for genotyped cows 
that were not closely related to the validation bulls (i.e. 
not daughters, granddaughters, or sibs) and represented 
contemporary groups (herd – year – season) with at least 
five animals. The data records from these cows were kept 
in order to avoid exhausting the training set. The bull vali-
dation test set included 48 bulls with EDCs greater than 20 
in the full data, but EDC = 0 in the reduced data. For the 
cow validation test, records from the last production year 
(2015) were excluded. There were 221 test cows which 
had no records in the reduced data but at least one record 
in the full data.

The full data were used to calculate daughter yield de-
viations (DYDs) for the bulls and yield deviations (YDs) 

https://www.nordicebv.info/
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for the cows (VanRaden & Wiggans, 1991) using a corre-
sponding ssGBLUP model. Bias was estimated by (G)EBV 
overdispersion, that is the regression coefficient b1 in the 
validation regression model (D)YD = b0 + b1 GEBV, and 
by the average difference between GEBV and (D)YD. The 
DYD observations for bull i were weighted using ki, calcu-
lated as ki =

EDCi
EDCi+�1

, where λ1 = (4 − h2)/h2. The YD ob-

servations for cow j were weighted using parameter kj, 
calculated as kj =

ERCj

ERCj +�2
, where λ2  =  (1  −  h2)/h2, and 

ERCj is the effective record contribution (Přibyl et al., 2013) 
of cow j. Validation reliability (R2) was calculated as the 
squared correlation between (D)YD and the reduced data 
GEBV divided by mean kj. The within-herd heritability 
was calculated using the formula h2 = �2a∕

(
�2a + �2pe + �2e

)
 , 

where �2a, �
2
pe and �2e are genetic, permanent environment 

and residual variances respectively.

2.5  |  Statistical model

The repeatability animal model presented in Kudinov 
et al. (2018) was modified by including a herd-by-sire in-
teraction random effect (Wiggans et  al.,  1988) and a re-
spective variance component (�2

hs
). Variance components 

and breeding values were estimated using the model:

where y is a vector of milk or fat yield records, b is a vector 
of the fixed effects, a ∼ N

(
0,A�2a

)
 and p ∼ N

(
0, I�2pe

)
 and 

h ∼ N
(
0, I�2

hs

)
 are vectors of random animal breeding val-

ues, permanent environmental and herd-by-sire interaction 
effects, X is a design matrix relating fixed effects to the re-
cords, Z1, Z2 and Z3 are design matrices relating the random 
effects to the records, and e ∼ N

(
0, I�2e

)
 is a vector of the 

residual effects. Matrix A is the pedigree-based relationship 
matrix and I are identity matrices.

Days open by age of calving by lactation and herd-year-
season were the fixed effects (Kudinov et  al.,  2018). No 
breed effect was used in the model, as active crossbreeding 
of RBW cows with HOL bulls began in the late 1970s, be-
fore the data sampling point. The 218 originally proposed 
unknown parent groups (UPGs; Kudinov et al., 2018) were 
revised and downscaled to 54, due to a low number of ob-
servations per group. Rearranged groups were based on 

origin (domestic or foreign), selection path and 5-year time 
intervals.

2.6  |  Genomic evaluation

The mixed-model equations (MME) of the original ssGB-
LUP (Aguilar et al., 2010; Christensen, 2010) included a 
joint relationship matrix H and its inverse:

where G is the genomic relationship matrix, A is the 
pedigree-based relationship matrix and A22 is a subblock of 
the A matrix including genotyped animals only. The UPGs 
were accounted in the augmented inverse relationship ma-
trix (A−1

UPG
), as presented in (Matilainen et al., 2018; Misztal 

et al., 2013):

where B = G−1 −A−1
22

,

Q includes the proportions of contributions each ani-
mal receives from the UPG, Q1 and Q2 are the submatrices 
of Q corresponding to the non-genotyped and genotyped 
animals, respectively, and Aij is the submatrix of A−1, 
with a superscript (i or j) value of 1 for the non-genotyped 
and a value of 2 for the genotyped animals. Inbreeding 
coefficients were used in the calculations of the inverse 
pedigree-based relationship matrices A−1 and A−1

22
.

We assumed that genotypes could describe 90% of the 
genetic variance, and thus the genomic relationships were 
regressed towards the pedigree relationships as:

where w represents the residual polygenic proportion 0.1, 
and G05 = 2

(
M101M

�
101

m

)
, with M101 as an n by m marker ma-

trix with the genotypes coded by {−1, 0, 1}, m is the number 
of SNP markers, n is the number of genotyped animals, that 
is assuming allele frequencies =0.5. The scaling factor 
st =

(
trace(A22)
trace(G05)

)
 was used to assure that the average of the 

y = Xb + Z1a + Z2p + Z3h + e,

H−1 = A−1 +

(
0 0

0 G−1−A−1
22

)
,

H−1 = A−1
UPG +

⎛⎜⎜⎜⎝

0 0 0

0 B −BQ2

0 −Q�
2B Q�

2BQ2

⎞⎟⎟⎟⎠
,

A−1
UPG =

⎛⎜⎜⎜⎝

A11 A12 −
�
A11Q1+A

12Q2

�
A21 A22 −

�
A21Q1+A

22Q2

�
−
�
Q�
1A

11+Q�
2A

21
�
−
�
Q�
1A

12+Q�
2A

22
�

Q�A−1Q

⎞⎟⎟⎟⎠
,

G = st (1 − w)G05 + wA22,
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diagonals of the genomic relationship matrix is equal to the 
average of the diagonal of the A22matrix.

2.7  |  Integration of external information

For integration of MACE DFS information to the LR 
evaluation, we used the method presented in Vandenplas 
et al. (2014), Vandenplas et al. (2017). For notational sim-
plicity, we present the MME with only the animal breed-
ing value and the fixed effects:

where subscript N pertains to the DFS MACE evaluation, 
the diagonal matrix D−1

N
 has the effective record contribu-

tion (ERC) increase for the bulls due to the DFS information 
and zero for the cows, R = I�2e is the residual (co)variance 
matrix and âN is solution vector of breeding values, and 
ŶN has the DRP from the DFS MACE evaluation. Both the 
D−1
N

 and âN were padded by zeros for animals in pedigree. 
The ERC were back solved from reliabilities in DFS evalua-
tions with the reversed reliability estimation as in Pitkänen 
et al. (2018). Separate herd-year-season fixed effect class was 
used for the bull pseudo-observations to reflect the different 
base of DFS compared to the LR evaluations. The LR is not 
part of MACE evaluation, thus external data were free from 
internal data and no actions to avoid double counting of in-
formation was needed.

2.8  |  Evaluation scenarios

The LR ssGBLUP evaluations were implemented and 
tested using three scenarios. In the first scenario, named 
ssLR, only LR phenotypic and genomic data were used. 
In the second scenario, named ssLRg, ssLR was upgraded 
with DFS bull genotypes. In the third scenario (ssLRdfs), 
the ssLR was upgraded with the DFS genotypes and the 
DRPs from the MACE evaluations. Thus, ssLRg included 
more genomic information than ssLR, while ssLRdfs in-
cluded more phenotypic information than ssLRg.

2.9  |  Software

Pedigree pruning, calculation of inbreeding coefficients 
and relationship submatrix A22 were performed using the 
RelaX2 program (Strandén & Vuori, 2006). Variance com-
ponents were estimated with restricted maximum like-
lihood (REML) (Patterson & Thompson,  1971) in DMU 
software (Madsen et al., 2010) using AI-REML algorithm. 
Unification of the DNA arrays and imputation of miss-
ing alleles were performed using FImpute v. 2.2 software 
(Sargolzaei et  al.,  2014). The G−1 and B matrices were 
computed using the HGinv v. 0.87 program (Strandén & 
Mäntysaari, 2018). The EDC, ERC and DRP, and finally 
the (G)EBV and (D)YD computations were performed in 
MiX99 software (Strandén & Lidauer, 1999).

[
X�R−1X X�R−1Z

Z�R−1X Z�R−1Z+H−1
�
−2
a +D−1

N �
−2
e

][
b̂

âN

]
=

[
X�R−1y

Z�R−1y+D−1
N �

−2
e âN

]
,

F I G U R E  2   Average genomic 
breeding value (GEBV) of bulls by 
birth year for milk yield (kg). Black 
line with triangles (ssLR) denotes the 
ssGBLUP model using Leningrad region 
(LR) phenotypes and genotypes; green 
line with snowflakes (ssLRg) denotes 
ssGBLUP using LR phenotypes, genotypes 
and Nordic (DFS) genotypes; blue line 
with circles (ssLRdfs) denotes ssGBLUP 
using LR phenotypes and genotypes, and 
DFS genotypes and deregressed EBVs 
(DRPs) [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3   |   RESULTS

The estimated genetic (�2a), herd-sire (�2
hs

), permanent en-
vironment (�2pe) and residual (�2e) variance components 
with respective SEs for milk yield were 330,735 ± 6,571, 
80,532 ± 3,023, 274,195 ± 8,741 and 955,257 ± 3,352 re-
spectively. For the fat yield, the estimated variance com-
ponents were 451 ± 9 (�2a), 118 ± 4 (�2

hs
), 300 ± 11 (�2pe) and 

1,393 ± 5 (�2e). Thus, the estimated heritability 0.21 ± 0.005 
was the same for the milk and fat yields.

The average GEBV of milk yield (kg) by the birth year 
of bulls with EDCs above 20 for the three ssGBLUP mod-
els is presented in Figure 2. Each GEBV trend was adjusted 
for the same base level by centring the mean GEBV of all 
cows born in 2010 to be zero. The genetic trends from ssLR 
and ssLRg had similar shapes, with an average annual ge-
netic progress of 40  kg in 1995–2010. ssLRdfs showed a 
larger annual genetic trend (60 kg). Similar patterns were 
observed for the fat yield trends; the estimated annual ge-
netic gains were 1.2 kg for ssLR and ssLRg and 1.9 kg for 
ssLRdfs (Figure 3).

Genetic trends in milk and fat yields for the cows are 
presented in Figures  4 and 5 respectively. The average 
annual predicted genetic gain in milk yield was identical 
using either ssLR or ssLRg (50  kg), but the annual ge-
netic gain was 55  kg when using ssLRdfs. For fat yield, 
the annual genetic gain based only on LR data was 1.7 kg 
compared to a genetic gain of 1.9 kg obtained with an aug-
mented data.

Table 1 shows the validation statistics of GEBV of milk 
yield based on DYD and YD for bulls and cows respectively. 

The highest validation reliability R2 was observed for 
ssLRdfs: 0.30 for bulls and 0.42 for cows. Including DFS 
genotypes (ssLRg) in bull validation did not increase R2 
compared to ssLR. For cows, R2 was higher in ssLR (0.38) 
than in ssLRg (0.36). Regression coefficients (b1) of DYD 
on GEBV for ssLR and ssLRg were similar and below one 
(0.78 and 0.80). ssLRdfs gave the lowest b1 (0.58). For 
cows, the highest b1 was from ssLR (1.69) and the lowest 
(1.14) from ssLRdfs.

Results of a linear regression of fat yield (D)YD on 
GEBV are given in Table 2. For bulls, the highest valida-
tion reliability (0.18) was obtained with both ssLRg and 
ssLRdfs. The difference in R2 values between ssLR and the 
other models was 0.01. For cows, the increased amount 
of foreign information decreased validation reliability; the 
highest R2 of 0.41 was achieved with LR data only (ssLR). 
The R2 value reduced by 0.07 units in ssLRg and an ad-
ditional 0.13 units in ssLRdfs. For fat yield, b1 was larger 
than that obtained from the milk yield. For bulls, b1 values 
were 0.64 and 0.68 for ssLR and ssLRg, respectively, but 
lower for ssLRdfs (0.41). For cows, b1 values were above 
one for ssLR and ssLRg (1.86 and 1.67 respectively). In 
ssLRdfs, b1 was below one (0.89).

4   |   DISCUSSION

Genomic selection has been successfully applied in the 
animal breeding of various species (Stock & Reents, 2013). 
A particularly large impact has been on the dairy cattle in-
dustry, where genomic prediction has reduced the genera-
tion interval by approximately 2.6 years and has increased 

F I G U R E  3   Average genomic 
breeding value (GEBV) of bulls by birth 
year for fat yield (kg). Black line with 
triangles (ssLR) denotes ssGBLUP model 
using Leningrad region (LR) phenotypes 
and genotypes; green line with snowflakes 
(ssLRg) denotes ssGBLUP using LR 
phenotypes, genotypes and Nordic (DFS) 
genotypes; blue line with circles (ssLRdfs) 
denotes ssGBLUP used LR phenotypes 
and genotypes, and DFS genotypes and 
deregressed EBVs (DRPs) [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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the number of candidate bulls at AI stations up to 70% 
(Mäntysaari et  al.,  2020; VanRaden,  2020). Despite the 
attractiveness and benefits of genomic selection, it can-
not be implemented in all cattle populations due to small 
population sizes, low numbers of progeny-tested bulls, or 
other limited resources.

In our study, we implemented the ssGBLUP model 
for the admixed population of HOL and RBW cattle from 
LR with a limited number of progeny-tested bulls. The 
local genotyped animals were mostly cows. To improve 
prediction accuracy, we added bull genotypes from the 

neighbouring HOL DFS population and finally increased 
the number of progeny-tested animals in the reference 
population by integrating external deregressed NAV-scale 
MACE EBVs.

The set of reference animals in LR was expected to be 
too small to perform genomic prediction with prediction 
reliability as high as that reported for large USA HOL pop-
ulation (Wiggans et al., 2017). One approach to enlarging 
a reference population is to include genomic data from 
an external population. However, the success of this ap-
proach depends on the availability of phenotypic data for 

F I G U R E  4   Average genomic 
breeding value (GEBV) of cows by birth 
year for milk yield (kg). Black line with 
triangles (ssLR) denotes ssGBLUP model 
using Leningrad region (LR) phenotypes 
and genotypes; green line with snowflakes 
(ssLRg) denotes ssGBLUP using LR 
phenotypes, genotypes and Nordic (DFS) 
genotypes; blue line with circles (ssLRdfs) 
denotes ssGBLUP using LR phenotypes 
and genotypes, and DFS genotypes and 
deregressed EBVs (DRPs) [Colour figure 
can be viewed at wileyonlinelibrary.com]

F I G U R E  5   Average genomic 
breeding value (GEBV) of cows by birth 
year for fat yield (kg). Black line with 
triangles (ssLR) denotes ssGBLUP model 
using Leningrad region (LR) phenotypes 
and genotypes; green line with snowflakes 
(ssLRg) denotes ssGBLUP using LR 
phenotypes, genotypes and Nordic (DFS) 
genotypes; blue line with circles (ssLRdfs) 
denotes ssGBLUP using LR phenotypes 
and genotypes, and DFS genotypes and 
deregressed EBVs (DRPs) [Colour figure 
can be viewed at wileyonlinelibrary.com]
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these animals in the internal population and the genetic 
distance between the pooled and the target populations 
(Lund et  al.,  2014). Based on our results, a gradual up-
grade of the data by adding genotypes of bulls with ge-
netic ties to both data sets did not sufficiently increase 
the size of the reference population. However, we did 
not include EBVs of bulls with ERCs less than 20 in the 
DFS data. Nonetheless, including 414 DFS genotypes im-
proved the prediction accuracy of the milk yield for bulls. 
Comparable to our study, correlation between milk yield 
DGVs and DRPs was 0.26 in a small Chinese HOL refer-
ence population with 85 genotyped bulls and 2,862 geno-
typed cows (Ma et al., 2014). Correlation of unweighted 
DYDs and GEBVs was higher in current study, the lowest 
value (0.38) was attained using LR data and genotypes 
only.

The highest R2 in the milk yield was obtained with a 
model where DRP pseudo-phenotypes of DFS bulls de-
rived from Interbull MACE evaluations were blended 
with LR data. Similarly, in Přibyl et al. (2013), R2 increased 
after Interbull DRP pseudo-phenotypes were blended into 
Czech HOL genomic evaluations. However, integration of 
the traditional MACE evaluations should be performed 

with caution, as genomic pre-selection bias has been ob-
served in bulls born after 2009 (Patry & Ducrocq, 2011).

The favourable effect of including DFS information on 
R2 in the milk yield was not observed in the fat yield. The 
phenotypic data recording pitfalls in fat yield, such as vari-
ability in milk analysis systems (Kudinov et al., 2017), may 
be a potential explanation for this. Including the external 
pseudo-phenotypes caused bias in the unstable prediction 
approach, leading to discrepancy between the expected 
and observed breeding values. From this viewpoint, it is 
important to understand whether various sources of phe-
notypic data are equally relevant and accurate before using 
them in the blending procedure. When recording errors 
are more prominent in the internal data than in the exter-
nal data, a bias similar to what we observed in fat yield is 
also expected in the prediction. The other explanation for 
the reduced accuracy of the blended method is the valida-
tion test practice not fitting the ssLR model perfectly. As 
shown by Legarra and Reverter (2018), a reciprocal of the 
size of contemporary groups may generate upwards bias 
in the R2 due to decreasing size of contemporary groups. 
Hence, the bias may have reduced after the integration of 
DFS data. We computed (results not presented) reliability 

Modela

Validation animals

Bulls (42 animals) Cows (221 animals)

E (GEBV 
-DYD)b 2 * b1 R2 E (GEBV-YD) b1 R2

ssLR 529 0.78 0.21 65 1.69 0.38

ssLRg 557 0.80 0.21 91 1.55 0.36

ssLRdfs 748 0.58 0.30 113 1.14 0.42

Note: Genomic enhanced breeding values (GEBV) and (daughter) yield deviations (D)YD were from the 
validation animals.
assLR = model with Leningrad region genomic and phenotypic data, ssLRg = ssLR and Nordic (DFS) 
genomic data, ssLRdfs = ssLRg and DFS bulls EDCs.
bE (GEBV-DYD) = difference between GEBV and DYD, b1 = regression coefficient, R2 = validation 
reliability

T A B L E  1   Bull and cow validation 
results of milk yield by the three single-
step GBLUP models in the Leningrad 
Region Russian Black & White and 
Holstein population

Modela

Validation animals

Bulls (42 animals) Cows (217 animals)

E (GEBV 
-DYD)b 2 * b1 R2 E (GEBV-YD) b1 R2

ssLR 18 0.64 0.17 6 1.86 0.41

ssLRg 19 0.68 0.18 7 1.67 0.34

ssLRdfs 27 0.41 0.18 7 0.89 0.21

Note: Genomic enhanced breeding values (GEBV) and (daughter) yield deviations (D)YD were from the 
validation animals.
assLR = model with Leningrad region genomic and phenotypic data, ssLRg = ssLR and Nordic (DFS) 
genomic data, ssLRdfs = ssLRg and DFS bulls EDCs.
bE (GEBV-DYD) = difference between GEBV and DYD, b1 = regression coefficient, R2 = validation 
reliability

T A B L E  2   Bull and cow validation 
results of fat yield from the three single-
step GBLUP models in the Leningrad 
Region Russian Black & White and 
Holstein population
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and linear regression of GEBVs estimated using full and 
reduced data (Legarra & Reverter, 2018). Obtained R2 in-
creased along with increment of the data, both in milk 
and fat yields. However, any validation results from bulls 
must be considered with caution as only 42 candidates 
were used.

Advantages of ssGBLUP can be seen when the num-
ber of genotyped animals is too modest to allow for ac-
curate estimates from the multi-step genomic prediction 
(Amaya-Martínez et  al.,  2020; Christensen et  al.,  2012). 
Multi-step genetic evaluations with integrated external 
information may create biased predictions due to an extra 
step used for blending the external information (Guarini 
et al., 2019). In such a case, using ssGBLUP provides less 
biased prediction due to the simultaneous use of genomic 
and pedigree-based information (Přibyl et al., 2013). The 
limitations of ssGBLUP mostly concern the compatibility 
of the A and G matrices, originating from an inconsis-
tency in the base population definition in the genotyped 
and ungenotyped animals (Legarra et al.,  2014). Proper 
consideration of UPG in ssGBLUP is important for com-
patibility between the A and G matrices. Pedigree com-
pleteness is critical to the compatibility between the G and 
A22 matrices (Misztal et al., 2010, 2013). A promising way 
to solve the compatibility of the G and A matrices is to 
fit the ancestral structure of the population by so-called 
metafounders, as presented by Legarra et al. (2015). The 
method per se represents a fusion of Christensen's idea 
(Christensen et  al.,  2012) to construct G with 0.5 allele 
frequencies and an extension of the pedigree by related 
and inbred pseudofounders (Legarra et al.,  2015). These 
relationships are accounted through a Gamma (Γ) ma-
trix. The method has provided promising results when 
used in multiple breed pedigrees (Xiang et al., 2017) and 
simulated data (Garcia-Baccino et  al.,  2017). However, 
implementation of the metafounder approach may be 
challenging when a population has breeds with high ad-
mixture (Kudinov et al., 2020). We tested the metafounder 
approach for the population in our current study but did 
not observe improvement in validation reliability. We 
used nine metafounders to describe the ancestral struc-
ture of the population. All diagonal elements of the Γ 
matrix, along with the off-diagonal elements, were very 
close to each other, except for the highly different old RBW 
groups. The absence of validation reliability improvement 
with the metafounder approach may be due to the small 
number of genotyped animals, most of which were born 
during the last two decades. The self-relationships of 
metafounders associated with old birth years were mostly 
computed using sporadic genotypes of historic RBW and 
Dutch HOL bulls. The metafounders approach may be-
come attractive when the number of genotype animals 
increases noticeably.

The total genetic effect in the ssGBLUP model de-
pends on pedigree (A) and genomic relationships (G). 
The weight of genomic information in ssGBLUP can be 
changed by including a polygenic proportion variable (w), 
which weighs variation due to markers and pedigree in-
formation in the genomic relationship matrix. Commonly 
used values for w range from 10% to 30% (Ma et al., 2014; 
Matilainen et al., 2018; Přibyl et al., 2013). We tested both 
10% and 30% for w, and observed only a small difference 
in the cross-validation results. Thus, only results with the 
10% proportion are presented.

A random herd by sire interaction effect applied in the 
model is the same as that originally used by Kudinov et al. 
in LR data (Kudinov et al., 2018). A random herd by sire 
interaction effect is also used in routine evaluations in the 
USA (VanRaden & Wiggans, 1991). The herds in LR are 
large, but their management and the origin of breeding 
animals may vary significantly. We observed that imported 
semen from the top North American bulls were used in 
only a fraction of the LR farms. Interactions between sire 
and herd may occur in such situations or when the best 
bulls are only used in a few top herds (Dimov et al., 1995). 
Several Animal model and ssGBLUP test runs performed 
using the model without the herd-by-sire random effect 
showed lower reliability and higher bias in EBV predic-
tion. The natural future direction to improve prediction 
accuracy in the LR data is to use test-day records instead of 
305-day records and potentially even consider balancing 
investment into phenotyping and genotyping (Obšteter 
et al., 2021).

5   |   CONCLUSIONS

Single-step genomic prediction was successfully imple-
mented for the LR data. The reference population included 
more genotyped cows than bulls because the number of 
progeny-tested bulls was low in the LR. Including EBVs 
and genotypes from the Nordic HOL population into the 
LR ssGBLUP evaluation created one of the largest dairy 
reference population among Russian regions. This joint 
reference population improved the prediction accuracy in 
the milk yield but not in the fat yield. The prediction ac-
curacy of breeding values can be improved through better 
recording of phenotypes and pedigrees, and by drastically 
increasing the number of genotyped cows and progeny-
tested bulls.
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