44 research outputs found

    Performance of A Membrane-Less Air-Cathode Single Chamber Microbial Fuel Cell in Electricity Generation from Distillery Wastewater

    Get PDF
    AbstractDistillery wastewater contains high organic compounds and nutrients suitable for microorganisms in biological processes such as microbial fuel cell (MFC) which converts the chemical energy contained in organic matter into electricity by microorganisms. The bioelectricity production during the treatment of the distillery wastewater was studied using the air-cathode SCMFCs. The distillery wastewater varied concentrations in the range of 125 to 3,000mg COD L-1 and operated in fed batch mode at 37°C. The results shows that the voltage and current outputs increased with increases in distillery wastewater concentration (0.005-0.055mA). Greater soluble chemical oxygen demand (CODS) removal (29.5-56.7%) and total solids reduction was obtained up 35%. Indicated that the distillery wastewater can produced bioelectricity and can be treated using the membrane-less, air-cathode SCMFCs

    Improvement of Mesophilic Biohydrogen Production from Palm Oil Mill Effluent Using Ozonation Process

    Get PDF
    AbstractBiological fermentative production of hydrogen from the ozonated palm oil mill effluent (POME) was conducted in batch reactors using an anaerobic sludge as a microbial seed. Fermentation was setup at pH 4.0-6.0, varying POME concentration range of 5,000-37,000mg L-1 under mesophilic condition (37°C). The results showed that pH 6.0 is an optimum pH and the maximum hydrogen yield of 28.3mL g-1 COD was obtained. Comparative results of hydrogen production from the raw POME versus the ozonated POME indicated that the ozone pretreatment of POME (mg COD: mg ozone = 102.8) elevated the biodegradability of the POME constituents and significantly enhanced yield and rate of the hydrogen production. Hydrogen production using ozonated POME concentration of 30,000mg L-1 displayed the maximum yield of 182.3mL g-1 COD, which is 49% higher than that from raw POME. Meanwhile the maximum production rate of 43.1mL h-1 was observed at COD concentration of 25,000mg L-1 ozonated POME. Maximum COD removal was 44% at COD concentration of 15,000mg L-1 ozonated POME. This work demonstrated ozonation of POME significant improved performance of hydrogen production

    Optimizing Sulfur Oxidizing Performance of Paracoccus Pantotrophus Isolated from Leather Industry Wastewater

    Get PDF
    AbstractBiogas has been used as alternatives for renewable energy in many applications. Hydrogen sulfide in the biogas is a significant factor to limit its usages. This research focused on using a pure bacterial strain for hydrogen sulfide removal from the biogas in a biotrickling filter process. The pure bacterial strain was isolated from a full-scale leather industry wastewater treatment plant. 16S rDNA sequence of the isolated bacterium is closely related to Paracoccus pantotrophus. P. pantotrophus is able to use sulfide and thiosulfate as energy sources for growth under aerobic conditions. The optimum concentrations of phosphate buffer (26 - 78mM, pH 8) and thiosulfate concentrations (5 – 20g/L) were evaluated in order to maximize microbial growth and sulfur oxidation activity before applying in the biotrickling filter system. The result showed that 52mM buffer concentration and 10g/L thiosulfate were suitable for growth and sulfur oxidation activity. The research findings suggest that P. pantotrophus has the potential application in the biotrickling filter process of hydrogen sulfide removal for upgrading biogas quality

    Kinetics of Bioethanol Production from Glycerol by Enterobacter Aerogenes

    Get PDF
    AbstractKinetics of ethanol production from glycerol as sole carbon source using Enterobacter aerogenes were evaluated in batch fermentation with initial glycerol range from 10 to 120 g L-1 under 240 hr incubation at 30°C and pH 7. E. aerogenes was able to grow and produce the maximum ethanol concentration of 136.7 mM at the initial glycerol concentration of 20 g L-1. At this glycerol concentration, glycerol was completely utilized after 40 hr fermentation and ethanol yield was 0.7 mol mol-1. Microbial growth appeared to decrease when the initial glycerol concentrations were increased. In the initial glycerol concentration range of 10-45 g L-1, glycerol utilization was approximately 90% after 40 hr fermentation. Minimal amount volatile fatty acids and 1, 3-propanediol were detected

    Bioethanol Production from Glycerol by Mixed Culture System

    Get PDF
    AbstractGlycerol, a by-product from biodiesel industry, is a promising feedstock for subsequent bioconversion to higher-value products. Potential application of a mixed microbial consortium on the fermentative conversion of glycerol to ethanol was demonstrated in this study. Maximum ethanol concentration of 11.1 g l-1 was produced after 72 h fermentation from the initial pure glycerol concentration of 45 g l-1, at 30 ĖŠC, and pH 7 under anaerobic conditions, corresponding to the ethanol production rate and yield of 0.34 g l-1 h-1, and 0.81 mol ethanolmol-1 glycerol, respectively. The microbial consortium yielded lower ethanol concentration (6.5 g l-1) but similar ethanol yield (0.85 mol ethanol mol-1 glycerol) when crude glycerol of 45 g l-1 was fermented at the same condition. At the optimum fermentative condition of the pure glycerol, phylogenetic analysis of microbial consortium based on 16S rRNA gene sequences indicated that Gammaproteobacteria represented 95% of the microbial diversity in the consortium while the rest belonged to Betaproteobacteria. The consortium was dominated by bacteria closely related to genera Enterobacter and Klebsiella, which could play the role on conversion of glycerol to ethanol in this system

    Sustainable Waste-to-Energy Technologies: Bioelectrochemical Systems

    Get PDF
    The food industry produces a large amount of waste and wastewater, of which most of the constituents are carbohydrates, proteins, lipids, and organic fibers. Therefore food wastes are highly biodegradable and energy rich. Bioelectrochemical systems (BESs) are systems that use microorganisms to biochemically catalyze complex substrates into useful energy products, in which the catalytic reactions take place on electrodes. Microbial fuel cells (MFCs) are a type of bioelectrochemical systems that oxidize substrates and generate electric current. Microbial electrolysis cells (MECs) are another type of bioelectrochemical systems that use an external power source to catalyze the substrate into by-products such as hydrogen gas, methane gas, or hydrogen peroxide. BESs are advantageous due to their ability to achieve a degree of substrate remediation while generating energy. This chapter presents an extensive literature review on the use of MFCs and MECs to remediate and recover energy from food industry waste. These bioelectrochemical systems are still in their infancy state and further research is needed to better understand the systems and optimize their performance. Major challenges and limitations for the use of BESs are summarized and future research needs are identified

    āļāļēāļĢāļœāļĨāļīāļ•āđ„āļŸāļŸāđ‰āļēāđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ‹āļĨāļĨāđŒāđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļˆāļļāļĨāļīāļ™āļ—āļĢāļĩāļĒāđŒāļˆāļēāļāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāļāļĨāļĩāđ€āļ‹āļ­āļĢāļ­āļĨāđāļĨāļ°āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđ‚āļĢāļ‡āļ‡āļēāļ™āļŸāļ­āļāļŦāļ™āļąāļ‡Electricity Generation in Microbial Fuel Cells from Waste Glycerol and Tannery Wastewater

    No full text
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļž āļāļēāļĢāļœāļĨāļīāļ•āļāļģāļĨāļąāļ‡āđ„āļŸāļŸāđ‰āļēāļˆāļēāļāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāļāļĨāļļāđˆāļĄāļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāđ„āļšāđ‚āļ­āļ”āļĩāđ€āļ‹āļĨ āļ„āļ·āļ­ āļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāļāļĨāļĩāđ€āļ‹āļ­āļĢāļ­āļĨ āđāļĨāļ°āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļŸāļ­āļāļŦāļ™āļąāļ‡ āļ„āļ·āļ­ āļ™āđ‰āļģāđ€āļŠāļĩāļĒāļˆāļēāļāđ‚āļĢāļ‡āļ‡āļēāļ™āļŸāļ­āļāļŦāļ™āļąāļ‡ āđ‚āļ”āļĒāđƒāļŠāđ‰āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāđ€āļ‹āļĨāļĨāđŒāđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļˆāļļāļĨāļīāļ™āļ—āļĢāļĩāļĒāđŒ āļĢāļ§āļĄāđ„āļ›āļ–āļķāļ‡āļāļēāļĢāļāļģāļˆāļąāļ”āļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāđƒāļ™āļĢāļđāļ›āļ‹āļĩāđ‚āļ­āļ”āļĩ āļˆāļēāļāļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒ āļžāļšāļ§āđˆāļē āļāļģāļĨāļąāļ‡āđ„āļŸāļŸāđ‰āļēāļˆāļēāļāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāļāļĨāļĩāđ€āļ‹āļ­āļĢāļ­āļĨ āļĄāļĩāļ„āđˆāļē 0.0018 āļĄāļīāļĨāļĨāļīāļ§āļąāļ•āļ•āđŒāļ•āđˆāļ­āļ•āļēāļĢāļēāļ‡āđ€āļĄāļ•āļĢ āđāļĨāļ°āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđ‚āļĢāļ‡āļ‡āļēāļ™āļŸāļ­āļāļŦāļ™āļąāļ‡ āļŠāļēāļĄāļēāļ–āļœāļĨāļīāļ•āļāļģāļĨāļąāļ‡āđ„āļŸāļŸāđ‰āļēāđ„āļ”āđ‰  6.2 āļĄāļīāļĨāļĨāļīāļ§āļąāļ•āļ•āđŒāļ•āđˆāļ­āļ•āļēāļĢāļēāļ‡āđ€āļĄāļ•āļĢ āđ€āļ‹āļĨāļĨāđŒāđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļˆāļļāļĨāļŠāļĩāļžāļŠāļēāļĄāļēāļĢāļ–āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļšāļģāļšāļąāļ”āļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāđƒāļ™āļĢāļđāļ›āļ‹āļĩāđ‚āļ­āļ”āļĩāļˆāļēāļāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāļāļĨāļĩāđ€āļ‹āļ­āļĢāļ­āļĨ āđāļĨāļ°āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđ‚āļĢāļ‡āļ‡āļēāļ™āļŸāļ­āļāļŦāļ™āļąāļ‡āđ„āļ”āđ‰ 80 āđāļĨāļ° 90 % āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđƒāļ™āļŠāđˆāļ§āļ™āļāļēāļĢāļāļģāļˆāļąāļ”āđ„āļ™āđ‚āļ•āļĢāđ€āļˆāļ™āđƒāļ™āļĢāļđāļ› TKN (Total Kjeldahl Nitrogen) āļ—āļĩāđˆāđ„āļ”āđ‰āļˆāļēāļāļ™āđ‰āļģāđ€āļŠāļĩāļĒāđ‚āļĢāļ‡āļ‡āļēāļ™āļŸāļ­āļāļŦāļ™āļąāļ‡ āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ–āļķāļ‡ 50% āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļĒāļąāļ‡āļĄāļĩāļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ—āļĩāđˆāļšāđˆāļ‡āļšāļ­āļāļ–āļķāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ­āļ­āļāļ‹āļīāđ€āļ”āļŠāļąāđˆāļ™-āļĢāļĩāļ”āļąāļāļŠāļąāđˆāļ™ āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļŦāļĨāļąāļāđƒāļ™āđ€āļ—āļ„āđ‚āļ™āđ‚āļĨāļĒāļĩāđ€āļ‹āļĨāļĨāđŒāđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļˆāļļāļĨāļīāļ™āļ—āļĢāļĩāļĒāđŒ āļ„āļ·āļ­ āđ„āļ‹āļ„āļĨāļīāļāđ‚āļ§āļĨāđāļ—āđ€āļĄāļ—āļĢāļĩāđāļŠāļ”āļ‡āļ–āļķāļ‡āļ›āļāļīāļāļīāļĢāļīāļĒāļēāļ­āļ­āļāļ‹āļīāđ€āļ”āļŠāļąāđˆāļ™-āļĢāļĩāļ”āļąāļāļŠāļąāđˆāļ™ āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āđ€āļ›āđ‡āļ™āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āļ—āļĩāđˆāđ€āļāļīāļ”āļ‚āļķāđ‰āļ™āļšāļ™āļ‚āļąāđ‰āļ§āđ„āļŸāļŸāđ‰āļēāļ āļēāļĒāđƒāļ™āļĢāļ°āļšāļš āđāļĨāļ°āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ„āļđāļĨāļ­āļĄāļ›āđŒ (Coulombic efficiency: CE) āđ‚āļ”āļĒāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāļāļĨāļĩāđ€āļ‹āļ­āļĢāļ­āļĨ āđāļĨāļ°āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđ‚āļĢāļ‡āļ‡āļēāļ™āļŸāļ­āļāļŦāļ™āļąāļ‡ āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ„āļđāļĨāļ­āļĄāļ›āđŒ 7.62 āđāļĨāļ° 15.6 āđ€āļ›āļ­āļĢāđŒāđ€āļ‹āđ‡āļ™āļ•āđŒ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđ€āļŦāļĨāđˆāļēāļ™āļĩāđ‰āļ–āļ·āļ­āđ€āļ›āđ‡āļ™āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļ—āļĩāđˆāđāļŠāļ”āļ‡āļ–āļķāļ‡āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļœāļĨāļīāļ•āļžāļĨāļąāļ‡āļ‡āļēāļ™āđ„āļŸāļŸāđ‰āļēāļ‚āļ­āļ‡āđ€āļ‹āļĨāļĨāđŒāđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļˆāļļāļĨāļīāļ™āļ—āļĢāļĩāļĒāđŒāļˆāļēāļāļŠāļēāļĢāļ•āļąāđ‰āļ‡āļ•āđ‰āļ™āļ—āļąāđ‰āļ‡ 2 āļŠāļ™āļīāļ” āļ”āļąāļ‡āļ™āļąāđ‰āļ™ āļŠāļēāļĄāļēāļĢāļ–āļŠāļĢāļļāļ›āđ„āļ”āđ‰āļ§āđˆāļē āļ™āđ‰āļģāđ€āļŠāļĩāļĒāđ‚āļĢāļ‡āļ‡āļēāļ™āļŸāļ­āļāļŦāļ™āļąāļ‡āļŠāļēāļĄāļēāļĢāļ–āļœāļĨāļīāļ•āļāļģāļĨāļąāļ‡āđ„āļŸāļŸāđ‰āļēāļˆāļēāļāđ€āļ‹āļĨāļĨāđŒāđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļˆāļļāļĨāļīāļ™āļ—āļĢāļĩāļĒāđŒāđ„āļ”āđ‰āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļĄāļēāļāļāļ§āđˆāļēāļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāļāļĨāļĩāđ€āļ‹āļ­āļĢāļ­āļĨAbstractThe aims of this research were compared the electricity generation and COD removal between waste glycerol and tannery wastewater with microbial fuel cell technology. The results showed power generation from waste glycerol and tannery waste water were obtained 0.0018 mW m-2 and 6.2 mW m-2, respectively.  The COD removal efficiency can be obtained from waste glycerol and tannery wastewater 80 and 90%, respectively. The nitrogen removal efficiency from tannery wastewater in form of TKN (Total Kjeldahl Nitrogen) can be obtained 50%. Moreover, there are 2 parameters that indicated to oxidation-reduction reaction, which important reaction for microbial fuel cell are cyclic voltammetry (CV) and coulombic efficiency (CE). Cyclic voltammetry (CV) was showed the oxidation-reduction on electrode. Coulombic efficiency (CE) from waste glycerol and tannery wastewater were 7.62 and 15.6 %, respectively. There are parameters that showed the efficiency of electricity generation with 2 of substrates from microbial fuel cells. Therefore, microbial fuel cell technology that can be electricity generation from tannery wastewater better than waste glycerol.  

    āļĢāļ°āļšāļšāđ€āļāļĐāļ•āļĢāļ­āļąāļˆāļ‰āļĢāļīāļĒāļ°āđ€āļžāļ·āđˆāļ­āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ™āļēāļ‚āđ‰āļēāļ§āļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļĄāļīāļ•āļĢāļ•āđˆāļ­āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄ Smart Agriculture System for Paddy Field Environmentally Friendly Management

    No full text
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļ•āļīāļ”āļ•āļąāđ‰āļ‡āļĢāļ°āļšāļšāđ€āļāļĐāļ•āļĢāļ­āļąāļˆāļ‰āļĢāļīāļĒāļ°āđƒāļ™āļ™āļēāļ‚āđ‰āļēāļ§ āđ€āļžāļ·āđˆāļ­āļ•āļĢāļ§āļˆāļ•āļīāļ”āļ•āļēāļĄāļ˜āļēāļ•āļļāļ­āļēāļŦāļēāļĢāđ„āļ™āđ‚āļ•āļĢāđ€āļˆāļ™ (N) āļŸāļ­āļŠāļŸāļ­āļĢāļąāļŠ (P) āđ‚āļžāđāļ—āļŠāđ€āļ‹āļĩāļĒāļĄ (K) āđāļĨāļ°āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļāļĢāļ”āļ”āđˆāļēāļ‡ (pH) āđāļšāļšāđ€āļĢāļĩāļĒāļĨāđ„āļ—āļĄāđŒ āļˆāļēāļāļ™āļąāđ‰āļ™āļ™āļģāļ‚āđ‰āļ­āļĄāļđāļĨāļĄāļēāļ„āļģāļ™āļ§āļ“āđ€āļžāļ·āđˆāļ­āļ§āļēāļ‡āđāļœāļ™āļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāđƒāļŠāđ‰āļ›āļļāđ‹āļĒāđƒāļ™āļ™āļēāļ‚āđ‰āļēāļ§ āđāļĨāļ°āļ„āļģāļ™āļ§āļ“āļāļēāļĢāļĨāļ”āļāļēāļĢāļ›āļĨāļ”āļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāļˆāļēāļāļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āđ‚āļ„āļĢāļ‡āļāļēāļĢ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļˆāļēāļāđ€āļāđ‡āļšāļ‚āđ‰āļ­āļĄāļđāļĨāļœāđˆāļēāļ™āļĢāļ°āļšāļšāđ€āļāļĐāļ•āļĢāļ­āļąāļˆāļ‰āļĢāļīāļĒāļ°āđ€āļ›āđ‡āļ™āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļē 1 āđ€āļ”āļ·āļ­āļ™ āđ„āļ™āđ‚āļ•āļĢāđ€āļˆāļ™   āļĄāļĩāļ„āđˆāļē 180-200 mg L-1 āļŸāļ­āļŠāļŸāļ­āļĢāļąāļŠ āļĄāļĩāļ„āđˆāļē 200-300 mg L-1 āđ‚āļžāđāļ—āļŠāđ€āļ‹āļĩāļĒāļĄ āļĄāļĩāļ„āđˆāļē 500-800 mg L-1 āđāļĨāļ°āļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļ›āđ‡āļ™āļāļĢāļ”āļ”āđˆāļēāļ‡ āļĄāļĩāļ„āđˆāļē 7.08-7.28 āļˆāļēāļāļ™āļąāđ‰āļ™āļĄāļĩāļāļēāļĢāļ§āļēāļ‡āđāļœāļ™āļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāđƒāļŠāđ‰āļ›āļļāđ‹āļĒāļŠāļđāļ•āļĢ 46-0-0 āđāļĨāļ° 16-20-0 āđ€āļžāļ·āđˆāļ­āļ„āļ§āļšāļ„āļļāļĄāļ›āļĢāļīāļĄāļēāļ“āđ„āļ™āđ‚āļ•āļĢāđ€āļˆāļ™ āļŸāļ­āļŠāļŸāļ­āļĢāļąāļŠ āđāļĨāļ°āđ‚āļžāđāļ—āļŠāđ€āļ‹āļĩāļĒāļĄ āđƒāļŦāđ‰āđ€āļŦāļĄāļēāļ°āļŠāļĄāļ•āđˆāļ­āļāļēāļĢāđ€āļˆāļĢāļīāļāđ€āļ•āļīāļšāđ‚āļ•āļ‚āļ­āļ‡āļ‚āđ‰āļēāļ§ āļ‹āļķāđˆāļ‡āļœāļĨāļˆāļēāļāđƒāļŠāđ‰āļĢāļ°āļšāļšāđ€āļāļĐāļ•āļĢāļ­āļąāļˆāļ‰āļĢāļīāļĒāļ°āđ€āļžāļ·āđˆāļ­āļāļēāļĢāļˆāļąāļ”āļāļēāļĢāļ™āļēāļ‚āđ‰āļēāļ§ āļžāļšāļ§āđˆāļē āļŠāđˆāļ§āļĒāļĨāļ”āļ„āđˆāļēāđƒāļŠāđ‰āļˆāđˆāļēāļĒāļˆāļēāļāļāļēāļĢāđƒāļŠāđ‰āļ›āļļāđ‹āļĒāđ„āļ”āđ‰āļ–āļķāļ‡āļĢāđ‰āļ­āļĒāļĨāļ° 50 āļŠāļēāļĄāļēāļĢāļ–āļ›āļĢāļąāļšāļ›āļĢāļīāļĄāļēāļ“āļāļēāļĢāđƒāļŠāđ‰āļ›āļļāđ‹āļĒāđ„āļ”āđ‰āļĨāļ”āļĨāļ‡āļĢāđ‰āļ­āļĒāļĨāļ° 50 āđ‚āļ”āļĒāļ—āļĩāđˆāļœāļĨāļœāļĨāļīāļ•āđ„āļĄāđˆāļĨāļ”āļĨāļ‡ āđāļĨāļ°āļŠāđˆāļ§āļĒāļĨāļ”āļāļēāļĢāļ›āļĨāđˆāļ­āļĒāļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļāļˆāļēāļāļāļēāļĢāļ”āļģāđ€āļ™āļīāļ™āđ‚āļ„āļĢāļ‡āļāļēāļĢ 58 kg CO2 eq āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļāļēāļĢāđƒāļŠāđ‰āļ›āļļāđ‹āļĒāđƒāļ™āļ›āļĢāļīāļĄāļēāļ“āļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄāļĒāļąāļ‡āļŠāļēāļĄāļēāļĢāļ–āļĨāļ”āļāļēāļĢāļŠāļ°āļŠāļĄāļ‚āļ­āļ‡āļŠāļēāļĢāđ€āļ„āļĄāļĩāđƒāļ™āļ”āļīāļ™ āļ—āļĩāđˆāļˆāļ°āļŠāđˆāļ‡āļœāļĨāđ€āļŠāļĩāļĒāļ•āđˆāļ­āļˆāļļāļĨāļīāļ™āļ—āļĢāļĩāļĒāđŒāđƒāļ™āļ”āļīāļ™ āđāļĨāļ°āļ—āļģāđƒāļŦāđ‰āļ”āļīāļ™āļ‚āļēāļ”āļ„āļ§āļēāļĄāļ­āļļāļ”āļĄāļŠāļĄāļšāļđāļĢāļ“āđŒāļ­āļĩāļāļ”āđ‰āļ§āļĒThe research aims to install a smart agriculture system in paddy field management for real-time monitoring of nitrogen (N), phosphorus (P) potassium (K), and pH. After that, use the information to calculate the amount of fertilizer utilization and reduction of greenhouse gas emissions from the project's implementation. The results showed that data were collected through smart online monitoring for 1 month, it was found that nitrogen was 180-200 mg L-1, phosphorus was 200-300 mg L-1, potassium was 500-800 mg L-1 and pH was 7.08-7.28. After that, planning for the amount of fertilizer utilization formulas 46-0-0 and 16-20-0 to control the ratio of N: P: K to be optimal for rice growth. As a result of the smart agriculture system for paddy field management, it was found that help to save costs by 50%, reduce fertilizer use by 50% without declining yields, and reduce greenhouse gas emissions from this project by 58 kg CO2 eq. Moreover, the proper use of fertilizers can also reduce the accumulation of chemicals in the soil that will negatively affect soil microorganisms and cause soil depletion.Keywords: āļĢāļ°āļšāļšāđ€āļāļĐāļ•āļĢāļ­āļąāļˆāļ‰āļĢāļīāļĒāļ°; āļ™āļēāļ‚āđ‰āļēāļ§; āļāļēāļĢāđƒāļŠāđ‰āļ›āļļāđ‹āļĒāļ­āļĒāđˆāļēāļ‡āļ–āļđāļāļ§āļīāļ˜āļĩāđƒāļ™āļžāļ·āđ‰āļ™āļ—āļĩāđˆāđ€āļāļĐāļ•āļĢ; āļāđŠāļēāļ‹āđ€āļĢāļ·āļ­āļ™āļāļĢāļ°āļˆāļ; Smart agriculture system; Paddy field; Good fertilization Practice in Agricultural Land; Greenhouse ga

    Enhancement of Biohydrogen Yield by Co-digestion of Waste Glycerol and Glucose

    Get PDF
    AbstractBiological hydrogen production from glycerol waste with glucose as co-substrate was tested in batch reactor at the varying mass ratios of glycerol and glucose. All ratios have equivalent extent of total chemical oxygen demand of 9.13 g L-1.COD. Fermentation was setup in 0.5 L glass bottle, 37o C, and pH 6. Liquid and gas samples were collected to analyze concentrations of volatile fatty acids and glycerol; and gas compositions. The results showed that glycerol/glucose ratio plays an important role on the H2 yield. Maximum H2 yield was obtained at the glycerol/glucose ratio of 75:1. Acetate and butyrate were the main fermentative end products. This work demonstrated glucose can be used as a co-substrate to promote the H2 yield in the fermentation of waste glycerol
    corecore