459 research outputs found

    On the Grothendieck Theorem for jointly completely bounded bilinear forms

    Full text link
    We show how the proof of the Grothendieck Theorem for jointly completely bounded bilinear forms on C*-algebras by Haagerup and Musat can be modified in such a way that the method of proof is essentially C*-algebraic. To this purpose, we use Cuntz algebras rather than type III factors. Furthermore, we show that the best constant in Blecher's inequality is strictly greater than one.Comment: 9 pages, minor change

    Quantum Steering and Space-Like Separation

    Get PDF
    In non-relativistic quantum mechanics, measurements performed by separate observers are modeled via tensor products. In Algebraic Quantum Field Theory, though, local observables corresponding to space-like separated parties are just required to commute. The problem of determining whether these two definitions of "separation" lead to the same set of bipartite correlations is known in non-locality as Tsirelson's problem. In this article, we prove that the analog of Tsirelson's problem in steering scenarios is false. That is, there exists a steering inequality that can be violated or not depending on how we define space-like separation at the operator level.Comment: Some typos corrected. Short discussion about Algebraic Quantum Field Theory. Modified introduction and conclusio

    Tsirelson's problem and Kirchberg's conjecture

    Full text link
    Tsirelson's problem asks whether the set of nonlocal quantum correlations with a tensor product structure for the Hilbert space coincides with the one where only commutativity between observables located at different sites is assumed. Here it is shown that Kirchberg's QWEP conjecture on tensor products of C*-algebras would imply a positive answer to this question for all bipartite scenarios. This remains true also if one considers not only spatial correlations, but also spatiotemporal correlations, where each party is allowed to apply their measurements in temporal succession; we provide an example of a state together with observables such that ordinary spatial correlations are local, while the spatiotemporal correlations reveal nonlocality. Moreover, we find an extended version of Tsirelson's problem which, for each nontrivial Bell scenario, is equivalent to the QWEP conjecture. This extended version can be conveniently formulated in terms of steering the system of a third party. Finally, a comprehensive mathematical appendix offers background material on complete positivity, tensor products of C*-algebras, group C*-algebras, and some simple reformulations of the QWEP conjecture.Comment: 57 pages, to appear in Rev. Math. Phy

    Matrix Product State and mean field solutions for one-dimensional systems can be found efficiently

    Get PDF
    We consider the problem of approximating ground states of one-dimensional quantum systems within the two most common variational ansatzes, namely the mean field ansatz and Matrix Product States. We show that both for mean field and for Matrix Product States of fixed bond dimension, the optimal solutions can be found in a way which is provably efficient (i.e., scales polynomially). This implies that the corresponding variational methods can be in principle recast in a way which scales provably polynomially. Moreover, our findings imply that ground states of one-dimensional commuting Hamiltonians can be found efficiently.Comment: 5 pages; v2: accepted version, Journal-ref adde

    Phase transitions for random states and a semi-circle law for the partial transpose

    Full text link
    For a system of N identical particles in a random pure state, there is a threshold k_0 = k_0(N) ~ N/5 such that two subsystems of k particles each typically share entanglement if k > k_0, and typically do not share entanglement if k < k_0. By "random" we mean here "uniformly distributed on the sphere of the corresponding Hilbert space." The analogous phase transition for the positive partial transpose (PPT) property can be described even more precisely. For example, for N qubits the two subsystems of size k are typically in a PPT state if k k_1. Since, for a given state of the entire system, the induced state of a subsystem is given by the partial trace, the above facts can be rephrased as properties of random induced states. An important step in the analysis depends on identifying the asymptotic spectral density of the partial transposes of such random induced states, a result which is interesting in its own right.Comment: 5 pages, 2 figures. This short note contains a high-level overview of two long and technical papers, arXiv:1011.0275 and arXiv:1106.2264. Version 2: unchanged results, editorial changes, added reference, close to the published articl

    More efficient Bell inequalities for Werner states

    Full text link
    In this paper we study the nonlocal properties of two-qubit Werner states parameterized by the visibility parameter 0<p<1. New family of Bell inequalities are constructed which prove the two-qubit Werner states to be nonlocal for the parameter range 0.7056<p<1. This is slightly wider than the range 0.7071<p<1, corresponding to the violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality. This answers a question posed by Gisin in the positive, i.e., there exist Bell inequalities which are more efficient than the CHSH inequality in the sense that they are violated by a wider range of two-qubit Werner states.Comment: 7 pages, 1 figur

    Volumes of Restricted Minkowski Sums and the Free Analogue of the Entropy Power Inequality

    Full text link
    In noncommutative probability theory independence can be based on free products instead of tensor products. This yields a highly noncommutative theory: free probability . Here we show that the classical Shannon's entropy power inequality has a counterpart for the free analogue of entropy . The free entropy (introduced recently by the second named author), consistently with Boltzmann's formula S=klogWS=k\log W, was defined via volumes of matricial microstates. Proving the free entropy power inequality naturally becomes a geometric question. Restricting the Minkowski sum of two sets means to specify the set of pairs of points which will be added. The relevant inequality, which holds when the set of "addable" points is sufficiently large, differs from the Brunn-Minkowski inequality by having the exponent 1/n1/n replaced by 2/n2/n. Its proof uses the rearrangement inequality of Brascamp-Lieb-L\"uttinger

    Structured Random Matrices

    Full text link
    Random matrix theory is a well-developed area of probability theory that has numerous connections with other areas of mathematics and its applications. Much of the literature in this area is concerned with matrices that possess many exact or approximate symmetries, such as matrices with i.i.d. entries, for which precise analytic results and limit theorems are available. Much less well understood are matrices that are endowed with an arbitrary structure, such as sparse Wigner matrices or matrices whose entries possess a given variance pattern. The challenge in investigating such structured random matrices is to understand how the given structure of the matrix is reflected in its spectral properties. This chapter reviews a number of recent results, methods, and open problems in this direction, with a particular emphasis on sharp spectral norm inequalities for Gaussian random matrices.Comment: 46 pages; to appear in IMA Volume "Discrete Structures: Analysis and Applications" (Springer

    Typical local measurements in generalised probabilistic theories: emergence of quantum bipartite correlations

    Get PDF
    What singles out quantum mechanics as the fundamental theory of Nature? Here we study local measurements in generalised probabilistic theories (GPTs) and investigate how observational limitations affect the production of correlations. We find that if only a subset of typical local measurements can be made then all the bipartite correlations produced in a GPT can be simulated to a high degree of accuracy by quantum mechanics. Our result makes use of a generalisation of Dvoretzky's theorem for GPTs. The tripartite correlations can go beyond those exhibited by quantum mechanics, however.Comment: 5 pages, 1 figure v2: more details in the proof of the main resul

    Explicit lower and upper bounds on the entangled value of multiplayer XOR games

    Get PDF
    XOR games are the simplest model in which the nonlocal properties of entanglement manifest themselves. When there are two players, it is well known that the bias --- the maximum advantage over random play --- of entangled players can be at most a constant times greater than that of classical players. Recently, P\'{e}rez-Garc\'{i}a et al. [Comm. Math. Phys. 279 (2), 2008] showed that no such bound holds when there are three or more players: the advantage of entangled players over classical players can become unbounded, and scale with the number of questions in the game. Their proof relies on non-trivial results from operator space theory, and gives a non-explicit existence proof, leading to a game with a very large number of questions and only a loose control over the local dimension of the players' shared entanglement. We give a new, simple and explicit (though still probabilistic) construction of a family of three-player XOR games which achieve a large quantum-classical gap (QC-gap). This QC-gap is exponentially larger than the one given by P\'{e}rez-Garc\'{i}a et. al. in terms of the size of the game, achieving a QC-gap of order N\sqrt{N} with N2N^2 questions per player. In terms of the dimension of the entangled state required, we achieve the same (optimal) QC-gap of N\sqrt{N} for a state of local dimension NN per player. Moreover, the optimal entangled strategy is very simple, involving observables defined by tensor products of the Pauli matrices. Additionally, we give the first upper bound on the maximal QC-gap in terms of the number of questions per player, showing that our construction is only quadratically off in that respect. Our results rely on probabilistic estimates on the norm of random matrices and higher-order tensors which may be of independent interest.Comment: Major improvements in presentation; results identica
    corecore