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ABSTRACT

We give a necessary and sufficient condition for amenability of the Ba-

nach algebra of approximable operators on a Banach space. We further

investigate the relationship between amenability of this algebra and fac-

torization of operators, strengthening known results and developing new

techniques to determine whether or not a given Banach space carries an

amenable algebra of approximable operators. Using these techniques, we

are able to show, among other things, the non-amenability of the algebra

of approximable operators on Tsirelson’s space.

1. Introduction

Let A be a Banach algebra and let X be a Banach space which is also an A-

bimodule. Then X is a Banach A-bimodule if there exists a constant M so that

‖a · x‖ ≤ M‖a‖‖x‖ and ‖x · a‖ ≤ M‖a‖‖x‖ (a ∈ A, x ∈ X ). A (continuous)
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derivation from A to X is a (bounded) linear map D : A → X that satisfies the

identity

D(ab) = D(a) · b + a · D(b) (a, b ∈ A).

Every map of the form a 7→ a · x − x · a (a ∈ A), where x ∈ X is fixed, is a

continuous derivation. Derivations of this form are called inner derivations.

If X is a Banach A-bimodule, then its topological dual, X ∗, is also a Banach

A-bimodule under the actions

(a · f)(x) := f(x · a) and (f · a)(x) := f(a · x) (a ∈ A, x ∈ X , f ∈ X ∗).

The Banach algebra A is said to be amenable if, for every Banach A-

bimodule X , every continuous derivation D : A → X ∗ is inner.

For example, the group algebra, L1(G), of a locally compact group is amenable

if and only if the group G is amenable [13]; a C∗-algebra is amenable if and

only if it is nuclear [4, 11]; and a uniform algebra on a compact Hausdorff space

Ω is amenable if and only if it is C(Ω) [25].

In this note we shall be concerned with the amenability of the algebra A(X)

of approximable operators on a Banach space X , i.e., the operator norm

closure in B(X) of the ideal F(X) of continuous finite-rank operators on X ,

where B(X) denotes the algebra of all bounded linear operators on X . (When

X has the approximation property, A(X) coincides with the ideal of compact

operators on X .) In this setting the main problem is to characterize amenability

of A(X) in terms of properties of X .

The study of amenability of A(X) goes back to [13], where it is shown that

A(X) is amenable if X = `p for p ∈ (1,∞), or X = C[0, 1]. Further progress

in the study of amenability of this algebra is made in [9]. In this last paper

a geometric property, called property A, is introduced, and it is shown that

Banach spaces with this property carry amenable algebras of approximable

operators. Banach spaces with property A include all classical Banach spaces,

Lp-spaces (1 ≤ p ≤ ∞), spaces with a subsymmetric, shrinking basis, and

certain kinds of tensor product of Banach spaces with property A.

In this note we continue the study of amenability of the algebra A(X). Build-

ing upon ideas from [9] we shall develop new techniques that will allow us not

only to improve several results from [9] but also to answer some of the ques-

tions left open there. In particular, we will show that the algebra of approx-

imable operators on Tsirelson’s space is not amenable. An important fact that

should become apparent throughout these pages is that a full understanding
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of amenability of A(X) will necessarily rely on a good understanding of the

finite-dimensional case.

The paper has been organized as follows. In the next section, we have gath-

ered some terminology and basic facts we need. In Section 3, we give a necessary

and sufficient condition for amenability of A(X). Unfortunately, practical use

of this condition depends on our capability to find good estimates for the pro-

jective norm of certain elements called generalized diagonals. In Section 4, we

follow a different approach. The results of this section are to a great extent mo-

tivated by the notion of approximate primariness introduced in [9]. We explore

some of the ideas behind this notion, specially, its connection with factorization

properties of operators. Finally, in Section 5, we establish the non-amenability

of A(X) for every Banach space X in a certain family of Tsirelson-like spaces.

In doing this we shall rely on results from the previous sections.

2. Preliminaries

In this section we have gathered some notation and basic results that we shall

use throughout these pages.

To simplify the statement of the results, we shall denote by `∞ the linear

space, usually denoted by c0, of all bounded scalar sequences tending to zero.

Given a normed space X we denote by X∗ its topological dual. If X and Y

are isomorphic (resp., isometric) normed spaces, we write this as X ' Y (resp.,

X ∼= Y ), and denote by d(X, Y ) the Banach–Mazur distance between them, that

is, the infimum of numbers ‖T ‖‖T−1‖, where T is an isomorphism between X

and Y .

The adjoint of an operator T : X → Y is denoted by T ∗ and we write rgT

(resp., rkT ) for the range (resp., rank) of T . The identity operator on a normed

space X is denoted by IX or just I if the space X is clear from context.

By the inversion constant of a surjective linear map, Q : X → Y , between Ba-

nach spaces we mean the operator norm of the inverse of the linear isomorphism

Q̃ : X/ kerQ → Y induced by Q, that is, ‖Q̃−1‖. Given Banach spaces X , Y

and Z, a bilinear map ϕ : X × Y → Z will be said to be M -open if for every

z ∈ Z there exist x ∈ X and y ∈ Y such that ϕ(x, y) = z and ‖x‖‖y‖ ≤ M‖z‖.

We write ‖ · ‖∧ (resp., ‖ · ‖) for the projective (resp., operator) norm. If

two norms, ‖ · ‖1 and ‖ · ‖2, on a linear space are equivalent we write this as
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‖ · ‖1 ∼ ‖ · ‖2. Given a set of vectors {ei : i ∈ I} in a Banach space, we denote

by [ei]i∈I the closure of its linear span.

Let e = (ei) be a 1-unconditional basis for the Banach space (E, ‖ · ‖), and

let (Xi, ‖ · ‖i) be a sequence of Banach spaces. We let

( ⊕
i
Xi

)
e

=

{
(xi) ∈

∏

i

Xi :
∑

i

‖xi‖iei converges in E

}
,

endowed with the norm ‖(xi)‖ :=
∥∥ ∑

i ‖xi‖iei

∥∥. It is well known that (
⊕

i Xi)e

is a Banach space. Moreover, if the basis e is in addition shrinking, then its

topological dual can be isometrically identified with the space (
⊕

i X∗
i )e∗ , where

e∗ stands for the 1-unconditional basis of E∗ formed by the biorthogonal func-

tionals associated with e. When e is the unit vector basis of `p (1 ≤ p ≤ ∞)

we write (
⊕

i Xi)p instead of (
⊕

i Xi)e.

Given a Banach space E with a 1-unconditional basis e = (ei) we denote

by Em the space [ei]
m
i=1. If X is a Banach space we denote by Em(X) (resp.,

E(X)) the Banach space (
⊕

i Xi)e, where Xi = X , 1 ≤ i ≤ m, and Xi = {0},

i > m (resp., Xi = X for all i). In particular, `p(X) (resp., `m
p (X)) denotes the

`p-sum of countably infinitely many (resp., m) copies of X . When appropriate,

we may for n ∈ N identify En(X) with En ⊗ X .

Given Banach spaces X and Y we write A(X, Y ) (resp., F(X, Y )) for the

Banach (resp., normed) space of approximable (resp., finite-rank) operators

from X to Y . When appropriate we shall identify F(X, Y ) with X∗ ⊗ Y , so

that for x∗ ∈ X∗, y ∈ Y the rank-1 operator x 7→ x∗(x)y is denoted x∗ ⊗ y.

When X = Y we simply write A(X) (resp., F(X)). Likewise, we shall use

tensor notation for operators Em(X) 7→ En(X) for a Banach space E with a

1-unconditional basis and an arbitrary Banach space X so that, for m, n ∈ N

we identify A(Em(X), En(X)) with A(Em, En) ⊗A(X).

For any Banach space X and positive integers n > m, there is a natural

isometric embedding Em(X) ↪→ En(X) which in turn induces an isometric

Banach algebra homomorphism A(Em(X)) ↪→ A(En(X)). Letting m and n

vary we obtain a direct system of Banach algebras and isometric Banach algebra

homomorphisms. Its inductive limit is also a Banach algebra that we denote by

A0(E(X)). Note that A0(`p(X)) = A(`p(X)), 1 < p ≤ ∞.

Recall that a Banach space X is said to have the λ-bounded approximation

property, λ-BAP in short, if there is a net (Tα) ⊂ F(X) of bound λ converging

strongly to the identity operator on X . We write this as Tα
s
→ IX . If, in
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addition, the Tα’s can be chosen to be projections then X is called a πλ-space.

A Banach space is said to have the bounded approximation property, BAP in

short, if it has the λ-BAP for some λ, and is said to be a π-space if it is a

πλ-space for some λ.

Recall that a bounded net (eα) in a normed algebra A is called a bounded

approximate identity, BAI in short, for A if limα eαa = limα aeα = a (a ∈ A).

A normed A-bimodule, X is essential, if A · X · A is dense in X . Clearly, if

A has a BAI, then this BAI is also a BAI for any essential A-bimodule. It is

well-known that the algebra of approximable operators on a Banach space X

has a BAI of bound λ if and only if X∗ has the λ-BAP [10, Theorem 3.3], [24].

Lastly, there is an intrinsic characterization of amenability that is particularly

useful in this setting. Precisely, a Banach algebra A is amenable if and only

if it has an approximate diagonal, i.e., a bounded net (dα) in A⊗̂A such that

π(dα)a → a and adα − dαa → 0 (a ∈ A), where π : A⊗̂A → A, a ⊗ b 7→ ab [14,

Lemma 1.2 and Theorem 1.3]. The Banach algebra A is said to be K-amenable

if it has an approximate diagonal of bound K. The smallest such K is called

the amenability constant of A.

Other definitions and results shall be given as they are needed.

3. Property A revised

Recall from [9] that a Banach space X is said to have property A if there exist

a constant K > 0 and a bounded net of projections (Pα) ⊂ A(X) such that

i) Pα
s
→ IX ;

ii) P ∗
α

s
→ IX∗ ;

iii) for each α there is a finite group Gα ⊂ F(Xα) whose linear span is

F(Xα) and such that maxT∈Gα
‖T ‖ ≤ K (where Xα = rgPα).

Property A was introduced in [9] in an attempt to explain amenability of

A(X) as a consequence of some sort of approximation property. Indeed, Ba-

nach spaces with this property must carry amenable algebras of approximable

operators [9, Theorem 4.2]. Though we believe the converse is unlikely to be

true, we do not know of an example of a Banach space X without property A

and that A(X) is amenable. The main result of this section, Corollary 3.3 below,

is a characterization of amenability of the algebra of approximable operators in

terms of a property analogous to property A.

We start with the following.
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Proposition 3.1: Let X be a Banach space such that A(X) is K-amenable.

Suppose in addition that A(X) contains a bounded net of projections, (Pα)α∈A,

such that Pα
s
→ IX and P ∗

α
s
→ IX∗ . Then A(X) has an approximate diagonal

(δα)α∈A with the following properties:

a) lim supα ‖δα‖∧ ≤ λK, where λ = lim supα ‖Pα‖;

b) π(δα) = Pα (α ∈ A);

c) W · δα = δα · W for every W ∈ PαA(X)Pα (α ∈ A); and

d) For every α ∈ A there exists β = β(α) ∈ A such that

δα ∈ A(X)Pβ ⊗ PβA(X).

Proof. Let (di)i∈I be an approximate diagonal for A(X) bounded by K. Since

Pα
s
→ IX and P ∗

α
s
→ IX∗ , we can assume, without loss of generality, that for

every i ∈ I there exists βi ∈ A such that di ∈ A(X)Pβi
⊗ Pβi

A(X). Let x ∈ X

and x∗ ∈ X∗ be fixed vectors such that x∗(x) = 1, and let (εα) be a net of

positive numbers converging to zero (εα = 1/rkPα, α ∈ A, will do).

Given i ∈ I, let Φi : X∗ ⊗ X → F(X) ⊗ F(X) be the linear map which is

defined on elementary tensors by Φi(ξ
∗ ⊗ ξ) := x∗ ⊗ ξ · di · ξ

∗ ⊗ x. It is readily

seen that Φi is an F(X)-bimodule morphism.

For each α ∈ A choose i(α) ∈ I ‘big enough’ so that

(1)
∣∣1 − x∗

(
π

(
di(α)

)
x
)∣∣ ≤ εα,

and

(2)
∥∥Φi(α)(Pα) − Pα · di(α)

∥∥
∧
≤ εα.

Since (π(di)) is a bounded approximate identity for A(X), it is clear that (1)

holds for every i ∈ I ‘big enough’. To see that the same is true about (2) note

that for every i ∈ I we have

Φi(ξ
∗ ⊗ ξ) − ξ∗ ⊗ ξ · di = x∗ ⊗ ξ · di · ξ

∗ ⊗ x − ξ∗ ⊗ ξ · di

= x∗ ⊗ ξ ·
(
di · ξ

∗ ⊗ x − ξ∗ ⊗ x · di

)
(ξ ∈ X, ξ∗ ∈ X∗).

This last equality, combined in the obvious way with the facts that Pα is finite-

rank and that (di) is an approximate diagonal, gives the desired conclusion.

Now define a new net (δα) ∈ A(X)⊗̂A(X) by

δα := καΦi(α)(Pα) (α ∈ A),
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where κα = 1/x∗(π(di(α))x). We show next that (δα) has all required properties.

First note that

‖δα‖∧ = κα‖Φi(α)(Pα)‖∧ ≤ κα‖Pα · di(α)‖∧ + κα‖Φi(α)(Pα) − Pα · di(α)‖∧

≤ κα‖Pα‖K + καεα,

and so, lim supα ‖δα‖∧ ≤ λK, that is, (a) is satisfied.

That (δα) satisfies (b) follows immediately from its definition above and the

definition of Φi. As for (c), just recall that Φi(α) is an F(X)-bimodule morphism

so W · δα = δα · W whenever WPα = PαW . By our assumption about (di), at

the beginning of the proof, it is clear that (d) is satisfied too.

Finally, since Pα
s
→ IX and P ∗

α
s
→ IX∗ , we have that

W ·δα−δα ·W = (W −PαWPα) ·δα +δα · (PαWPα−W ) → 0 (W ∈ A(X)).

Obviously, (π(δα)) is a BAI for A(X), so, (δα) is an approximate diagonal for

A(X).

Thus, if A(X) is amenable and has a net of projections as in the lemma, then

it has an approximate diagonal whose elements behave themselves like diagonals

in a sense that we make more precise in the next definition.

Definition 3.2: Let X and Y be finite-dimensional Banach spaces, and let A be

a subalgebra of F(X). We call an element ∆ ∈ F(Y, X)⊗̂F(X, Y ) a generalized

diagonal (g.d. in short) for A, if

i) W∆ = ∆W (W ∈ A); and

ii) π(∆)W = W (W ∈ A).

It is easily seen that when A = F(X), an element ∆ ∈ F(Y, X)⊗̂F(X, Y ) is

a generalized diagonal for A if and only if there exists an A-bimodule morphism

ρ : A → F(Y, X)⊗̂F(X, Y ) so that π ◦ ρ = IA and ρ(IX) = ∆. Furthermore,

if (xk)m
k=1 and (yi)

n
i=1 are bases of X and Y , respectively, then it follows from

this last observation, that ∆ can be written as

(3) ∆ =
∑

i,j

ai,j

∑

k

(y∗
j ⊗ xk) ⊗ (x∗

k ⊗ yi),

for some scalars ai,j satisfying
∑

i ai,i = 1, where, as is customary, the y∗
j ’s

(resp., the x∗
k’s) denote the biorthogonal functionals associated with the basis

(yi)
n
i=1 (resp., (xk)m

k=1). Conversely, it can be easily verified that every element

of the form (3) is a generalized diagonal for F(X).
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Now the main result of this section is merely a restatement of Proposition 3.1

in terms of generalized diagonals.

Corollary 3.3: Let X be a Banach space. Suppose A(X) contains a bounded

net of projections, (Pα)α∈A, such that Pα
s
→ IX and P ∗

α
s
→ IX∗ . Set Xα =

rg Pα (α ∈ A). Then A(X) is amenable if and only if there is a constant

K > 0 such that for every α ∈ A there exists β = β(α) ∈ A such that

F(Xβ , Xα)⊗̂F(Xα, Xβ) contains a generalized diagonal for F(Xα) of norm no

greater than K.

Proof. First suppose A(X) is amenable. By Proposition 3.1, A(X) has an

approximate diagonal, (δα)α∈A, satisfying (a)–(d) of the same proposition.

For each α ∈ A, let β = β(α) ∈ A be as in (d). Let P c
α (resp., P c

β) de-

note the corestriction of Pα (resp., Pβ) to its range, and let ıα : Xα → X

(resp., ıβ : Xβ → X) denote the canonical embedding of Xα (resp., Xβ)

into X . Then define ∆α ∈ F(Xβ , Xα)⊗̂F(Xα, Xβ) by ∆α := Φα(δα), where

Φα : A(X)⊗̂A(X) → F(Xβ , Xα)⊗̂F(Xα, Xβ) is the linear map defined on ele-

mentary tensors by Φα(R⊗S) := P c
αR ıβ ⊗P c

βS ıα (R, S ∈ A(X)). It is easy to

verify that ∆α is a g.d. for F(Xα) (α ∈ A). The desired conclusion now follows

on noting that the family (Φα)α∈A is uniformly bounded.

Conversely, for each α ∈ A, let ∆α ∈ F(Xβ , Xα)⊗̂F(Xα, Xβ) be a g.d. for

F(Xα) of norm ≤ K, and let Ψα : F(Xβ , Xα)⊗̂F(Xα, Xβ) → A(X)⊗̂A(X) be

the linear map defined on elementary tensors by Ψα(U ⊗V ) := ıαUP c
β ⊗ ıβV P c

α

(U ∈ F(Xβ , Xα), V ∈ F(Xα, Xβ)). Then (Ψα(∆α)) is an approximate diagonal

for A(X).

Remark 3.4: If X is not a π-space but still X∗ has the BAP, as must be the case

if A(X) is amenable [9], then we can argue as follows. First, we choose a net

of projections (Pα) in F(X) such that Pα
s
→ IX and P ∗

α
s
→ IX∗ . Such a net, of

course, would be necessarily unbounded. Then we choose a bounded net (Tα) in

F(X) such that PαTα = Pα = TαPα for every α, and set Xα := rgTα. It can be

shown that A(X) is amenable if and only if there is a constant K > 0 such that

for every α ∈ A there exists β = β(α) ∈ A such that F(Xβ , Xα)⊗̂F(Xα, Xβ)

contains a generalized diagonal for Aα = Pα|
XαA(X)Pα|Xα

(⊆ F(Xα)) of norm

no greater than K (here Pα|Xα
and Pα|

Xα denote the restriction and corestric-

tion, respectively, of Pα to Xα).
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Remark 3.5: Note that (iii) of the definition of property A guarantees the

existence of a diagonal (and hence a generalized diagonal) for F(Xα) in

F(Xα)⊗̂F(Xα) whose norm does not exceed K, namely, 1
|Gα|

∑
T∈Gα

T ⊗ T−1.

Example 3.6: Let (nk) be an unbounded sequence of positive integers, and let

1 ≤ p 6= q ≤ ∞. It is shown in [9, Theorem 6.5] that the algebra A
(
(
⊕

k `nk
p )q

)

is amenable. It seems to be unknown whether or not this algebra has property

A. However, it is relatively easy to show that this algebra satisfies the condition

of Corollary 3.3. Indeed, fix i ∈ N and let m = max{n1, . . . , ni, i}. The algebra

F
(
`m
q (`m

p )
)

has a diagonal ∆m of norm 1 (see the discussion below). (Fur-

thermore, note that ∆m can be given explicitly.) As (nk) is unbounded, there

are positive integers k1 < k2 < · · · < km so that m ≤ min{nkj
: 1 ≤ j ≤ m}.

Clearly, we can think of (
⊕i

j=1 `
nj

p )q =: Xi (resp., `m
q (`m

p )) as a 1-complemented

subspace of `m
q (`m

p ) (resp., (
⊕km

j=1 `
nj

p )q =: Xkm
). Let P1 : `m

q (`m
p ) → Xi and

P2 : Xkm
→ `m

q (`m
p ) be the natural projections, and let ı1 : Xi → `m

q (`m
p )

and ı2 : `m
q (`m

p ) → Xkm
be the corresponding inclusion maps. It is easy

to see that the image of ∆m by the linear map F(`m
q (`m

p ))⊗̂F(`m
q (`m

p )) →

F(Xkm
, Xi)⊗̂F(Xi, Xkm

), R ⊗ S 7→ P1RP2 ⊗ ı2Sı1, is a generalized diagonal

for F(Xi) in F(Xkm
, Xi)⊗̂F(Xi, Xkm

) of norm at most 1. The rest is clear.

It can be shown that if X is a Banach space so that A(X) is K-amenable

then A(`n
p (X)) is K-amenable for every 1 ≤ p ≤ ∞ and n ∈ N. Indeed, let

H be the group of permutation matrices generated by a cyclic permutation of

the unit vector basis of `n
p , and let G = {diag(t)σ : t ∈ {±1}n, σ ∈ H}, so

1
|G|

∑
g∈G g ⊗ g−1 is a diagonal for A(`n

p ) [9, Example 3.3]. Let (dα) be an

approximate diagonal for A(X) of bound K, and choose for each dα a repre-

sentation
∑

j Uα,j ⊗ Vα,j such that
∑

j ‖Uα,j‖‖Vα,j‖ ≤ K. Then the elements

δα := 1
|G|

∑
j,g(g⊗Uα,j)⊗ (g−1⊗Vα,j) ∈ A(`n

p (X))⊗̂A(`n
p (X)) form an approxi-

mate diagonal for A(`n
p (X)) of bound K. Crucial in establishing this last is the

fact that the g’s are permutation matrices, since it seems that `p(X) is rarely

ever a tight tensor product in the sense of [9, Definition 2.1]. This is better

exemplified through our next result, which extends Theorem 2.5 of [9].

Proposition 3.7: Let E be a Banach space with a 1-unconditional basis

e = (en). (Recall En = [ei]
n
1 .) Suppose there is K > 0 so that for each

m ∈ N there exists n ≥ m such that F(En, Em)⊗̂F(Em, En) contains a gener-

alized diagonal ∆m with the following property: there exists a representation
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∑k
i=1 Rm,i ⊗ Sm,i of ∆m such that

∑
i ‖Rm,i‖‖Sm,i‖ ≤ K and the matrix rep-

resentation of each Rm,i (resp., Sm,i) with respect to the ei’s has at most one

non-zero entry in each row and column. If X is a Banach space such that A(X)

is M -amenable then A0(E(X)) is KM -amenable.

Proof. Let (dα) be an approximate diagonal for A(X) of bound M . For each

dα choose a representation
∑

j Uα,j ⊗ Vα,j such that
∑

j ‖Uα,j‖‖Vα,j‖ ≤ M .

We show that the elements δm,α :=
∑

i,j(Rm,i ⊗ Uα,j) ⊗ (Sm,i ⊗ Vα,j)

form an approximate diagonal of bound KM for A0(E(X)). First, note that

Rm,i ⊗ Uα,j ∈ A(En(X), Em(X)) ⊂ A0(E(X)) and for any set of vectors

x1, x2, . . . , xn in X we have

∥∥∥∥Rm,i ⊗ Uα,j

( n∑

k=1

ek ⊗ xk

)∥∥∥∥ =

∥∥∥∥
∑

k

Rm,i(ek) ⊗ Uα,j(xk)

∥∥∥∥

=

∥∥∥∥
∑

k

‖Uα,j(xk)‖Rm,i(ek)

∥∥∥∥

≤ ‖Rm,i‖‖Uα,j‖

∥∥∥∥
∑

k

ek ⊗ xk

∥∥∥∥,

where the second equality follows from the fact that there is at most one non-

zero entry in each row and column of the matrix representation of Rm,i with

respect to the ei’s. Thus ‖Rm,i⊗Uα,j‖ ≤ ‖Rm,i‖‖Uα,j‖. Likewise, Sm,i⊗Vα,j ∈

A(Em(X), En(X)) ⊂ A0(E(X)) and ‖Sm,i⊗Vα,j‖ ≤ ‖Sm,i‖‖Vα,j‖. Combining

these estimates we readily obtain that ‖δm,α‖∧ ≤ KM .

In order to verify that π(δm,α)W → W and W · δm,α − δm,α · W → 0 (W ∈

A0(E(X)) it is clearly enough to look at operators W of the form Ers⊗T where

Ers = e∗r ⊗ es and T ∈ A(X). The procedures are standard, so we leave the

details to the reader.

An immediate consequence of the above is the following.

Corollary 3.8: Let (nk) be an increasing sequence of positive integers, let

1 ≤ p, q ≤ ∞, and let X be a Banach space such that A(X) is amenable. Then

A0

(
(
⊕

k `nk
p (X))q

)
is amenable. In particular, if q > 1 then A

(
(
⊕

k `nk
p (X))q

)

is amenable.

Proof. The space (
⊕

k `nk
p )q satisfies all hypotheses of Theorem 3.7 (see Exam-

ple 3.6 above).
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Corollary 3.3 essentially reduces the study of amenability of algebras of ap-

proximable operators on π-spaces to the problem of finding the minimum among

the norms of all generalized diagonals for F(X) in F(Y, X)⊗̂F(X, Y ) with X

and Y finite-dimensional. Here, of course, the main difficulty arises in esti-

mating the projective norm. In some cases, this task can be further simpli-

fied. For instance, let the basis (yi)
n
i=1 of Y be 1-unconditional. Set pi,j =∑

k(y∗
j ⊗ xk) ⊗ (x∗

k ⊗ yi) (1 ≤ i, j ≤ n). Then, while looking for generalized

diagonals of minimum norm, we can restrict our attention to convex linear

combinations of the pi,i’s. Indeed, in this case we have that

(4)

∥∥∥∥
∑

i,j

ai,j pj,i

∥∥∥∥
∧

≥

∥∥∥∥
∑

i

ai,i pi,i

∥∥∥∥
∧

=

∥∥∥∥
∑

i

|ai,i| pi,i

∥∥∥∥
∧

.

To see this, consider the linear operator

Φ : F(Y, X)⊗̂F(X, Y ) → F(Y, X)⊗̂F(X, Y ), R⊗S 7→ 2−n
∑

t∈{−1,1}n

RUt⊗UtS,

where Ut ∈ F(Y ) is defined by Ut(yj) := tjyj (1 ≤ j ≤ n). It is clear that

‖Φ‖ ≤ 1, and it is not difficult to see that Φ(
∑

i,j ai,j pj,i) =
∑

i ai,i pi,i, whence

the inequality. As for the equality, let Λ ∈ F(Y ) be defined by Λ(yi) := λiyi,

where λi = ai,i/|ai,i| (1 ≤ i ≤ n), and let ΦΛ be the linear map defined by

R ⊗ S 7→ R ⊗ ΛS (R ∈ F(Y, X), S ∈ F(X, Y )).

Then ΦΛ is an isometry and ΦΛ(ai,i pi,i) = |ai,i| pi,i (1 ≤ i ≤ n), so the equality

follows. The claim that we can restrict our attention to ‘convex’ linear combi-

nations now follows on combining (4) with the fact that the sum of the diagonal

coefficients in the representation (3) must be 1.

Remark 3.9: It is not hard to see that the sequence (pi,i) has the same basis,

unconditional and symmetric constants as the basis (yi).

It was asked in [9] whether or not the Cp spaces of W. B. Johnson (1 < p < ∞)

carry amenable algebras of compact operators. This question has an interesting

interpretation in terms of generalized diagonals. We consider the following more

general situation.

Let (Xn) be a sequence of finite-dimensional Banach spaces dense in the

Banach–Mazur sense in the class of all finite-dimensional Banach spaces, and

let e be an unconditional shrinking Schauder basis. Define Ce := (
⊕

n Xn)e.
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It is readily seen from Corollary 3.3 that the algebra A(Ce) is amenable if and

only if there exists an absolute constant K with the following property:

For every finite-dimensional Banach space X there exists a finite-dimensional

Banach space Y so that F(Y, X)⊗̂F(X, Y ) contains a generalized diagonal for

F(X) of norm at most K.

We do not know if one such constant can exist. However, if X is a finite-

dimensional Banach space with unconditional constant < λ then, by a finite-

dimensional version of a well-known result of J. Lindenstrauss [19, Remark 4],

there exists a finite-dimensional Banach space Y with symmetric constant < λ

such that X is a 1-complemented subspace of Y . Thus, F(Y )⊗̂F(Y ) contains

a diagonal for F(Y ) of norm < λ, and in turn F(Y, X)⊗̂F(X, Y ) contains a

generalized diagonal for F(X) of norm < λ. As a simple consequence of this

we quote the following.

Proposition 3.10: Let (Xn) be a sequence of finite-dimensional Banach spaces

with unconditional constant < λ, dense in the Banach–Mazur sense in the

class of all finite-dimensional Banach spaces with unconditional constant <

λ. Let e be an shrinking 1-unconditional Schauder basis. Then the algebra

A
(
(
⊕

n Xn)e
)

has property A.

We should like to end this section by noting that, there is an analogue of

Lindenstrauss’s result, due to Johnson, Rosenthal and Zippin, which states

that there is a universal constant C (≤ 1612) so that every finite-dimensional

Banach space is a 1-complemented subspace of a finite-dimensional space with

basis constant no greater than C [17, Corollary 4.12(a)].

4. Amenability and equivalence of operator ideal norms

Unfortunately, the characterization found in the previous section is not very

helpful when it comes to determine if the algebra of approximable operators on

a given Banach space is amenable or not. In this section we take a different

approach.

Recall that a Banach space X is called approximately primary if, for every

projection P ∈ B(X), at least one of the product maps

π : A(PX, X)⊗̂A(X, PX) → A(X)
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or

π : A((I − P )X, X)⊗̂A(X, (I − P )X) → A(X)

is surjective. This notion was introduced in [9], where it was shown that if

A(X) is amenable then X must be approximately primary. Moreover, also in

the same paper (see the proof of [9, Theorem 6.9] and comments after it), it

was shown that none of the following spaces is approximately primary: `p ⊕ `q

(1 < p, q < ∞, p 6= q and neither p nor q is equal 2), `1⊕ `q (q > 2) and `p ⊕ `∞

(p < 2).

Essential to the proof of this last result were the following:

Fact 1: Given Banach spaces X and Y , if the space X ⊕ Y is approximately

primary, then at least one of the product maps π : A(Y, X)⊗̂A(X, Y ) → A(X)

or π : A(X, Y )⊗̂A(Y, X) → A(Y ) is surjective.

Fact 2: For every Banach space X , the product map π : A(`p, X)⊗̂A(X, `p) →

A(X) is surjective if and only if the bilinear map ϕ : A(`p, X) × A(X, `p) →

A(X) is open.

The results of this section are, to some extent, generalizations of these two

facts. We start by recalling some standard terminology.

Let F be the operator ideal of all finite-rank operators between Banach spaces

so, for every pair of Banach spaces (X, Y ) we have F ∩ B(X, Y ) = F(X, Y ).

Recall that an operator ideal norm on F is a function γ : F → [0,∞[ that

satisfies:

a) γ
∣∣
F(E,F )

is a norm for every pair of Banach spaces E and F ;

b) γ(IC : C → C) = 1;

c) if A ∈ B(Y, Y0), B ∈ B(X0, X) and T ∈ F(X, Y ) then γ(ATB) ≤

‖A‖γ(T )‖B‖.

It is well-known that if γ is as above then ‖T ‖ ≤ γ(T ) for every T ∈ F .

Moreover, if T = f ⊗ x then ‖T ‖ = ‖f‖‖x‖ = γ(T ) (x ∈ X, f ∈ X∗).

In the terminology of [6, §9] the operator ideal F endowed with an operator

ideal norm as in the above definition is a normed operator ideal. Of course, it

will not be ‘Banach’ (i.e., complete). The reason for doing things in this way

should become clear later on. Examples of operator ideal norms on F are the

restrictions of the classical operator ideal norms, like nuclear and π-summing

norms, to F .

Now the main result of this section reads as follows.
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Theorem 4.1: Let X and Y be Banach spaces, and let γ and τ be operator

ideal norms on F . Suppose that

i) A(X) has a BAI of bound λ;

ii) The multiplication π : A(Y, X)⊗̂A(X, Y ) → A(X) is surjective with

inversion constant β;

iii) γ and τ are equivalent on one of F(Y, X) or F(X, Y ), say cγ ≤ τ ≤ Cγ.

Then γ and τ are equivalent on F(X), specifically

cβ−2λ−2γ ≤ τ ≤ Cβ2λ2γ.

Proof. Let F ∈ F(X) and let (Tα) be a BAI for A(X) of bound λ. Note that

for any operator ideal norm γ we have that limα γ(F − TαFTα) = 0. Indeed,

simply write F = GH with G, H ∈ F(X). Then

γ(F − TαFTα) = γ((G − TαG)H + TαG(H − HTα))

≤ ‖G − TαG‖γ(H) + λγ(G)‖H − HTα‖,

which tends to 0 as α → ∞.

Let G ∈ F(X) with ‖G‖ ≤ λ and let L > β. Choose
∑

i Ri ⊗ Si ∈

A(Y, X)⊗̂A(X, Y ) so that
∑

i RiSi = G and
∑

i ‖Ri‖‖Si‖ < λL. Then for

any F ∈ F(X) we have that

∑
i,j

γ(RiSiFRjSj) ≤ γ(F )
∑

i,j
‖RiSi‖‖RjSj‖ ≤ γ(F )L2λ2.

Moreover,

γ
( ∑

1≤i,j≤n

RiSiFRjSj − GFG
)

= γ
(( n∑

1

RiSi − G
)
F

( n∑

1

RjSj

)
+ GF

( n∑

1

RjSj − G
))

≤
∥∥∥

n∑

1

RiSi − G
∥∥∥γ(F )λL + ‖G‖γ(F )

∥∥∥
n∑

1

RjSj − G
∥∥∥,

which tends to 0 as n → ∞. So, the series
∑

i,j RiSiFRjSj is unconditionally

γ-convergent in F(X) to the sum GFG.
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Assume that γ and τ are equivalent on F(X, Y ). Then

cγ(GFG) ≤
∑

i,j

cγ(RiSiFRjSj) ≤
∑

i,j

c‖Ri‖γ(SiF )‖RjSj‖

≤
∑

i,j

‖Ri‖‖Si‖τ(F )‖RjSj‖ ≤ L2λ2τ(F ).

Letting G = Tα and α → ∞ we obtain cγ(F ) ≤ L2λ2τ(F ). Likewise τ(F ) ≤

L2λ2Cγ(F ). A similar proof working with FRj rather than SiF gives the result

in case γ and τ are equivalent on F(Y, X).

We now bring amenability into the picture. We start with the following

refinement of [9, Theorem 6.8].

Proposition 4.2: Let X be a Banach space and let P : X → X be a

bounded projection. Set Y = rg P and Z = rg (I − P ). If A(X) is K-

amenable then at least one of the maps π1 : A(Z, Y )⊗̂A(Y, Z) → A(Y ) or

π2 : A(Y, Z)⊗̂A(Z, Y ) → A(Z) is surjective with inversion constant no greater

than 4K‖P‖‖I − P‖max{‖P‖3, ‖I − P‖3}.

Proof. The proof is almost the same as that of [9, Theorem 6.8], one only needs

to keep track of the constants.

Set P1 = P , P2 = I − P , A = A(X) and Aij = PiAPj (i, j = 1, 2). Let

A◦
ii = π(Aji⊗̂Aij) with the norm ‖ · ‖◦ inherited from

Aji⊗̂Aij/(Aji⊗̂Aij ∩ kerπ)

via the natural isomorphism induced by the product map π (i, j = 1, 2, i 6= j).

It is easy to see that ‖aiia
◦
ii‖

◦ ≤ ‖aii‖‖a
◦
ii‖

◦ (aii ∈ Aii, a◦
ii ∈ A◦

ii), i = 1, 2.

So A◦
ii is a Banach Aii-bimodule, and Aii is a Banach A◦

ii-bimodule, i =

1, 2. Let A◦ = {a ∈ A : PiaPi ∈ A◦
ii, i = 1, 2} with the norm ‖a‖◦ =

max{‖P1aP1‖
◦, ‖P1aP2‖, ‖P2aP1‖, ‖P2aP2‖

◦} (a ∈ A◦). Then ‖aa◦‖◦ ≤

M‖a‖‖a◦‖◦ and ‖a◦a‖◦ ≤ M‖a‖‖a◦‖◦ (a ∈ A, a◦ ∈ A◦) for some constant

M ≤ 2 max{‖P1‖
2, ‖P2‖

2}, so (A◦, ‖ · ‖◦) is a Banach A-bimodule.

The map D : A → A◦, a 7→ P1aP2 − P2aP1 = P1a − aP1 is a bounded

derivation, and so, there is C ∈ (A◦)∗∗ such that Da = aC − Ca (a ∈ A).

Furthermore, we can choose C so that ‖C‖◦ ≤ KM‖D‖ (see [14, Theorem 1.3]).

Let Cii = PiCPi ∈ (A◦
ii)

∗∗ and let ıi : A◦
ii → Aii be the inclusion map (i = 1, 2).

It can be shown that aii(ı
∗∗
i Cii) = λiaii = (ı∗∗i Cii)aii (aii ∈ Aii) for some λi ∈ C
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(i = 1, 2). Moreover, λ2 −λ1 = 1 and if λi 6= 0 then A◦
ii = Aii and ı∗∗i Cii = Cii.

(See the proof of [9, Theorem 6.8] for details.)

As λ2 − λ1 = 1, at least one of λ1 or λ2 must have absolute value greater

than or equal 1/2. Without loss of generality, suppose |λ1| ≥ 1/2, so we have

A◦
11 = A11 and ı∗∗1 C11 = C11. Let (eα) be a net in A◦

11 bounded by ‖λ−1
1 C11‖

◦

and weak-∗ convergent to λ−1
1 C11. Since a◦

11(λ
−1
1 C11) = a◦

11 = (λ−1
1 C11)a

◦
11, it

is readily seen that eαa◦
11 → a◦

11 and a◦
11eα → a◦

11 weakly for every a◦
11 ∈ A◦

11.

A standard argument (see [5, Proposition 2.9.14 (iii)]) shows that A◦
11 has BAI

of bound ‖λ−1
1 C11‖

◦.

Now let a11 ∈ A11 be arbitrary. It is easy to see that A11 is an essential

A◦
11-bimodule, so, by [5, Theorem 2.9.24], there exist e◦ ∈ A◦

11 and b ∈ A11

such that a11 = e◦b, ‖e◦‖◦ ≤ ‖λ−1
1 C11‖

◦ and ‖b‖ ≤ ‖a11‖. Thus,

‖a11‖
◦ ≤ ‖e◦‖◦‖b‖ ≤ ‖λ−1

1 C11‖
◦‖a11‖ ≤ 2‖C‖◦‖a11‖ ≤ 2KM‖D‖‖a11‖.

As ‖P1aP2 − P2aP1‖
◦ = max{‖P1aP2‖, ‖P2aP1‖} ≤ ‖P1‖‖P2‖‖a‖ (a ∈ A), we

find that ‖D‖ ≤ ‖P1‖‖P2‖, so

‖a11‖
◦ ≤ 2KM‖P1‖‖P2‖‖a11‖ (a11 ∈ A11).

To finish the proof of the proposition, one just needs to note that the linear

isomorphisms A21⊗̂A12 → A(Z, Y )⊗̂A(Y, Z), R⊗S 7→ R|YZ ⊗S|ZY , and A(Y ) →

A11, T 7→ ıTP1, where ı : Y → X denotes the inclusion map, have norms no

greater than 1 and ‖P1‖, respectively. Combining these two last estimates

with those previously found, we finally obtain that the inversion constant of π1

cannot be greater than 2KM‖P1‖‖P2‖max{‖P1‖, ‖P2‖}, as claimed.

Combining Proposition 4.2 and Theorem 4.1 we obtain the following.

Corollary 4.3: Let γ and τ be operator ideal norms on F . Let X be a

Banach space such that A(X) is K-amenable and let P : X → X be a bounded

projection. Set Y = rg P and Z = rg (I − P ). If γ and τ are equivalent on one

of F(Y, Z) or F(Z, Y ), say cγ ≤ τ ≤ Cγ, then we must have cκ−2γ ≤ τ ≤ Cκ2γ

on one of F(Y ) or F(Z), for some κ ≤ 4K2‖P‖‖I − P‖max{‖P‖4, ‖I − P‖4}.

Proof. By Proposition 4.2, at least one of the product maps

π1 : A(Y, Z)⊗̂A(Z, Y ) → A(Z) or π2 : A(Z, Y )⊗̂A(Y, Z) → A(Y )

is onto with inversion constant no greater than

4K‖P‖‖I − P‖max{‖P‖3, ‖I − P‖3}.
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To fix ideas, suppose π1 : A(Y, Z)⊗̂A(Z, Y ) → A(Y ) is onto. As A(X) is K-

amenable it has a BAI of bound K, and so, A(Y ) has a BAI of bound K‖P‖.

Now one just needs to apply Theorem 4.1.

The estimate for κ given in the last corollary is very unlikely to be sharp.

However, to the effects of the present paper, the significant fact about it is that

it depends only on the amenability constant and the given projection. The

importance of this fact will be fully appreciated in Section 5 when we prove the

non-amenability of A(T ) for T the Tsirelson’s space.

Following are some important consequences of Corollary 4.3.

In what follows, we denote by Γp (1 ≤ p ≤ ∞) the operator ideal of all

bounded linear maps between Banach spaces that factor through `p endowed

with the operator ideal norm

γp(T : X → Y ) := inf
{
‖R‖‖S‖ : X

S
→ `p

R
→ Y and RS = T

}
.

Recall also that a Banach space X is said to be of cotype 2 if there exists a

constant C such that, for all finite subsets {x1, x2, . . . , xn} of X , we have

( ∑

i

‖xi‖
2

)1/2

≤ C2−n
∑

t∈{−1,1}n

∥∥∥∥
∑

i

tixi

∥∥∥∥.

Corollary 4.4: Let X and Y be infinite-dimensional Banach spaces with the

λ-BAP. If none of them is isomorphic to a Hilbert space and if X∗ and Y are

both of cotype 2 then A(X ⊕ Y ) is not amenable.

Proof. Since X∗ and Y are both of cotype 2, by Pisier’s abstract version of

Grothendieck’s inequality [22, Theorem 4.1], we have that B(X, Y ) = Γ2(X, Y ),

and hence that ‖ . ‖ ∼ γ2 on F(X, Y ). Suppose towards a contradiction that

A(X ⊕Y ) is amenable. By Corollary 4.3, either ‖ . ‖ ∼ γ2 on F(X) or ‖ . ‖ ∼ γ2

on F(Y ). Suppose ‖ . ‖ ∼ γ2 on F(X), so, for some constant M we have

γ2(T ) ≤ M‖T ‖ (T ∈ F(X)). Let E ⊂ X be a finite-dimensional subspace. By

[6, §16.9, Corollary], there exists TE ∈ F(X) such that TE(x) = x (x ∈ E) and

‖TE‖ ≤ λ + 1. Let ıE : E → X be the inclusion map. Then we have

γ2(I
∣∣
E

) = γ2(TEıE) ≤ γ2(TE)‖ıE‖ ≤ M‖TE‖ ≤ M(λ + 1).

This last holds for any E, so, supE γ2(I
∣∣
E

) ≤ M(λ + 1). By [20, Proposi-

tion 5.2], γ2(I) ≤ M(λ + 1), i.e., X is isomorphic to a Hilbert space, contrary

to assumption.
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Analogously, if ‖ . ‖ ∼ γ2 on F(Y ), we find that Y must be isomorphic to a

Hilbert space, contradicting the hypotheses once again. Thus, A(X⊕Y ) cannot

be amenable.

Let 1 < p < ∞. The p-th James space, Jp, is the completion of the linear

space of complex sequences with finite support in the norm

‖(αn)‖Jp
= sup

{( ∑m−1

n=1
|αin

− αin+1
|p

)1/p

: m, i1, . . . , im ∈ N,

m ≥ 2 and i1 < . . . < im

}
.

It is unknown if A(Jp) is amenable for any p. However, as a consequence of

Corollary 4.4 we have the following.

Corollary 4.5: The algebra A(Jp ⊕ J∗
p) is not amenable for any p ∈ [2,∞[.

Proof. By [23, Theorem 1], J∗
p has cotype 2 and neither Jp nor J∗

p is isomorphic

to a Hilbert space. So we can apply Corollary 4.4.

Recall from [20] that a Banach space X is said to be an Lp-space if it contains

a net (Xα) of finite-dimensional subspaces, directed by inclusion, whose union

is dense in X , and such that supα d(Xα, ` dim Xα
p ) < ∞.

Our next result generalizes [9, Theorem 6.9].

Corollary 4.6: Let X be an Lp-space, and let Y be an Lq-space, where

1 ≤ p, q ≤ ∞. Then A(X ⊕ Y ) is amenable if and only if one of the following

holds:

a) p = q.

b) p = 2 and 1 < q < ∞.

c) 1 < p < ∞ and q = 2.

Proof. Since the direct sum of two Lp-spaces (resp., of an Lp-space with 1 < p <

∞ and an L2-space) is an Lp-space, and the algebra of approximable operators

on an Lp-space is always amenable [9, Theorem 6.4], it is clear that if (a) (resp.,

(b) or (c)) is satisfied then A(X ⊕ Y ) is amenable.

Now suppose that none of (a), (b) or (c) is satisfied. We want to show that

A(X ⊕ Y ) is not amenable. By [21, Theorem III(a)] and [9, Corollary 5.5], it

is enough to consider the following two cases: (i) p < 2 ≤ q, and (ii) p < q < 2.

The case (i) follows from Corollary 4.4 above since for p < 2 (resp., 2 ≤ q)

an Lp-space (resp., the dual of an Lq-space) has cotype 2. In dealing with the
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second case we use the following result from [18], that we state as in [6, §26.5.

Corollary 2]:

Theorem: (Kwapień). Let 1 ≤ p ≤ r ≤ q ≤ ∞. Then B(`q, `p) = Γr(`q, `p).

Let p < q < 2 and let r ∈ ]p, q[. Using Kwapień’s theorem and [21, Theo-

rem III(c)] it can be shown that there exists a constant M so that

sup{γr(T |E) : E ⊂ Y a finite-dimensional subspace} ≤ M‖T ‖ (T ∈ B(Y, X)).

By [22, Corollary 8.9], there is an Lr-space so that B(Y, X) = ΓLr
(Y, X),

where ΓLr
(Y, X) denotes the space of all operators from X to Y that factor

through Lr with the norm

γLr
(T ) := inf{‖R‖‖S‖ : X

S
→ Lr

R
→ Y and RS = T }.

Assume towards a contradiction that A(X ⊕ Y ) is amenable. Then, by Corol-

lary 4.3, either γLr
∼ ‖ . ‖ on F(X) or γLr

∼ ‖ . ‖ on F(Y ). We show that

none of these can happen. Indeed, suppose, to fix ideas, that γLr
∼ ‖ . ‖ on

F(X). Then, by [21, Theorem 4.3], γLr
(IX) < ∞, and so, X is isomorphic to

a complemented subspace of an Lr-space which, by [21, Theorem III(b)], must

be an Lr-space. But this is impossible since p 6= r. Analogously, if γLr
∼ ‖ . ‖

on F(Y ), we find that Y is an Lr-space as well as an Lq-space reaching again

the same absurd. Thus, neither γLr
∼ ‖ . ‖ on F(X) nor γLr

∼ ‖ . ‖ on F(Y ). It

follows that A(X ⊕ Y ) cannot be amenable and this concludes the proof.

Remark 4.7: It should be noted that the argument of [9, Theorem 6.9] can be

extended without difficulty to cover the more general situation of Corollary 4.6

when 1 < p, q < ∞.

We now turn our attention to the second fact mentioned at the beginning of

this section, namely, the equivalence between surjectivity of

A(`p, X)⊗̂A(X, `p) → A(X)

and openness of

A(`p, X) ×A(X, `p) → A(X).

It is not hard to see that the reason why this last holds is that `p
∼= `p(`p)

(1 ≤ p ≤ ∞), or more precisely, because γp, being a norm, must satisfy the

triangle inequality. In what remains of this section we look at this in more

detail.
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Let Z be an infinite-dimensional Banach space. Given any pair of Banach

spaces (X, Y ) we let

γZ(T ) :=

inf
{
‖R‖‖S‖ : RS = T, S ∈ F(X, Z) and R ∈ F(Z, Y )

}
(T ∈ F(X, Y )).

In general, γZ need not be a norm on F(X, Y ). For example, let Zn = `n
p ⊕ `2

for some p ∈ (2,∞) fixed, let I : `2n
p → `2n

p be the identity map, and let P1

(resp., P2) be the natural projection onto the first (resp., last) n coordinates.

Then γZn
(P1 + P2) tends to ∞ with n while γZn

(P1) + γZn
(P2) = 2 for all

n. Indeed, suppose towards a contradiction that γZn
(P1 + P2) < C for some

constant C independent of n. Then for every n there is En ⊂ `n
p ⊕ `2 and

a linear isomorphism Tn : `2n
p → En such that ‖Tn‖‖T

−1
n ‖ < C. Let Qn be

the natural projection from `n
p ⊕ `2 onto `n

p , and let (xn,i) be a basis for En.

Without loss of generality, let Qn(xn,1), . . . , Qn(xn,m) be a maximal subset

of linearly independent vectors from
{
Qn(xn,i) : 1 ≤ i ≤ 2n

}
, so m ≤ n.

Taking linear combinations if necessary, we can pass to a new basis of En,

xn,1, . . . , xn,m, yn,m+1, . . . , yn,2n, in which each yn,i ∈ `2. Thus, En contains an

isometric copy of `n
2 and in turn `2n

p contains a C-isomorphic copy of `n
2 . But

this last should hold for every n, which is impossible by [8, Example 3.1]. Thus,

for big enough n, γZn
is not a norm.

Let us say that the Banach space Z has the factorization-norm property

if for every pair of Banach spaces, (X, Y ), γZ is a norm on F(X, Y ). It is easily

verified that if Z has the factorization-norm property then γZ is an operator

ideal norm on F . Also note from the example of the previous paragraph that

the factorization-norm property is an isometric property.

Corollary 4.8: Let X be an infinite dimensional Banach space such that

the algebra A(X) is K-amenable. Let P be a bounded projection on X . Set

Y = rg P and Z = rg (I − P ). If both, Y and Z, have the factorization-norm

property, then at least one of the maps

ϕY : F(Z, Y ) ×F(Y, Z) → F(Y ) or ϕZ : F(Y, Z) ×F(Z, Y ) → F(Z),

is M -open for some constant M ≤ κ2K2‖P‖‖I −P‖ with κ as in Corollary 4.3.

Proof. Since A(X) is K-amenable it has a BAI of bound K. In turn, A(Y ) has

a BAI of bound C = K‖P‖ and A(Z) has a BAI of bound c−1 = K‖I−P‖. As

A(Y, Z) is an essential Banach left A(Z)-module and an essential Banach right
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A(Y )-module we have, by [5, Theorem 2.9.24], that γY ≤ C‖·‖ and γZ ≤ c−1‖·‖

on F(Y, Z), so cγZ ≤ γY ≤ CγZ on F(Y, Z). Thus, by Corollary 4.3, we

should have κ−2cγZ ≤ γY ≤ κ2CγZ on at least one of F(Y ) or F(Z) for some

constant κ. To fix ideas, suppose κ−2cγZ ≤ γY ≤ κ2CγZ holds on F(Y ). Since

A(Y ) is an essential A(Y )-module we have, once again by [5, Theorem 2.9.24],

that γY ≤ C‖ · ‖ on F(Y ). This last combined with κ−2cγZ ≤ γY gives

that γZ ≤ M‖ · ‖ on F(Y ), where M ≤ κ2C/c, as desired. The case where

κ−2cγZ ≤ γY ≤ κ2CγZ holds on F(Z) is treated analogously.

It seems difficult, in general, to determine whether or not a given Banach

space has the factorization-norm property. It is well-known, for instance, that

any Banach space Z such that Z ∼= `p(Z), in particular, any Banach space

of the form `p(E), where E is some Banach space and 1 ≤ p ≤ ∞, has the

factorization-norm property (see [15, Proposition 1]).

The following proposition is analogous to [15, Proposition 1]. It gives a

sufficient condition for a Banach space to have the factorization-norm property.

Proposition 4.9: Let Z be an infinite dimensional Banach space such that

for every finite-dimensional subspace E of Z and every ε > 0 there exist finite-

dimensional subspaces F and G of Z such that E ⊂ F , G is (1+ε)-complemented

in Z, and for some set of vectors {u1, u2} forming a 1-unconditional basis of their

R-linear span we have that d(G, F⊕uF ) ≤ 1+ε, where F⊕uF denotes the direct

sum of two copies of F endowed with the norm ‖(x, y)‖ :=
∥∥‖x‖Z u1 +‖y‖Z u2

∥∥
((x, y) ∈ F ⊕ F ). Then Z has the factorization-norm property.

Proof. Of course, only the triangle inequality needs to be verified. For this,

let (X, Y ) be a pair of Banach spaces, let T1, T2 ∈ F(X, Y ), and let ε > 0 be

arbitrary. Let Si ∈ F(X, Z) and Ri ∈ F(Z, Y ) be such that RiSi = Ti and

‖Ri‖‖Si‖ ≤ γZ(Ti) + ε (i = 1, 2). Set E = S1X + S2X ⊂ Z and let F and G

be finite-dimensional subspaces of Z as in the hypotheses. Let L : G → F ⊕u F

be a linear isomorphism such that ‖L‖‖L−1‖ ≤ 1 + ε, and let PG : Z → G be

a projection onto G of norm ≤ 1 + ε. Let S : X → G, x 7→ L−1(S1x, S2x),

and let R : Z → Y , z 7→ (R1P1 + R2P2)LPGz, where P1 and P2 denote the

canonical coordinate projections onto the first and second components of F⊕uF ,

respectively.

It is easily seen that T1 + T2 = R S , that

‖S‖ ≤ ‖L−1‖
∥∥‖S1‖u1 + ‖S2‖u2

∥∥,
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and that

‖R‖ ≤ (1 + ε)‖L‖
∥∥‖R1‖u

∗
1 + ‖R2‖u

∗
2

∥∥,

where u∗
1, u

∗
2 is the basis dual to u1, u2. By [16, Main Lemma], we can assume

that

∥∥‖S1‖u1 + ‖S2‖u2

∥∥∥∥‖R1‖u
∗
1 + ‖R2‖u

∗
2

∥∥ = ‖R1‖‖S1‖ + ‖R2‖‖S2‖.

Then

γZ(T1 + T2) ≤ ‖R‖‖S‖ ≤ (1 + ε)2(‖R1‖‖S1‖ + ‖R2‖‖S2‖)

≤ (1 + ε)2(γZ(T1) + γZ(T2) + 2ε).

Since ε is arbitrary the desired conclusion follows.

All the following Banach spaces are easily seen to satisfy the condition of

Proposition 4.9 and hence have the factorization-norm property.

Example 4.10: Any Banach space Z with a 1-unconditional Schauder basis

z = (zn) such that (i) lim infn d
(
[zi]

n
1 , [zi]

2n
n+1

)
= 1; and (ii) ‖

∑2n
i=1 aizi‖ =

‖
∑2n

i=1 bizi‖ for all scalar sequences a1, a2, . . . , a2n and b1, b2, . . . , b2n such that

‖
∑n

i=1 aizi‖ = ‖
∑n

i=1 bizi‖ and ‖
∑2n

i=n+1 aizi‖ = ‖
∑2n

i=n+1 bizi‖ (n ∈ N).

Example 4.11: Any Banach space of the form (
⊕

k Ek)z, where z is as in the

previous example and Ek = E (k ∈ N) for some Banach space E.

Example 4.12: Any Johnson space in the sense of [1, Definition 3.1].

It is unclear, however, whether or not the factorization-norm property is an

essential hypothesis in Corollary 4.8. In fact, the following argument suggests

that the same conclusion or at least a similar one might hold without this

assumption.

Let 1 < p ≤ ∞ and let X be an infinite dimensional Banach space such that

A(X) is K-amenable. Then A(`p(X))(= A0(`p(X))) is K-amenable as well.

Let P : X → X be a bounded projection. Set Y = rgP and Z = rg (I −P ). As

`p(Y ) and `p(Z) have the factorization-norm property and ‖
⊕∞

i=1 P : `p(X) →

`p(Y )‖ = ‖P‖ there is, by Corollary 4.8, a constant M , depending only on K

and P , so that, at least one of the maps,

ϕ`p(Y ) : F(`p(Z), `p(Y )) ×F(`p(Y ), `p(Z)) → F(`p(Y )),
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or

ϕ`p(Z) : F(`p(Y ), `p(Z)) ×F(`p(Z), `p(Y )) → F(`p(Z)),

is M -open. To fix ideas, suppose ϕ`p(Y ) is M -open. Then

ϕY : F(`p(Z), Y ) ×F(Y, `p(Z)) → F(Y ),

is M -open too.

Remark 4.13: The fact that at least one of the maps ϕ`p(Y ) or ϕ`p(Z) above is

M -open if A(X) is amenable, still holds for p = 1, but this case needs to be

treated separately as A(`1(X)) 6= A0(`1(X)) (see Lemma 5.4 below).

Now let (Tα) be a BAI for F(Y ). Then, by the above, we have that for

every 1 ≤ p ≤ ∞ and every α there are operators Sα,p : Y → `p(Z) and

Rα,p : `p(Z) → Y such that Rα,p Sα,p = Tα and ‖Rα,p‖‖Sα,p‖ ≤ M‖Tα‖. The

fact that M is independent of α and p suggests the following might be true:

There exist k ∈ N and a positive constant M̃ such that for every index α, there

are operators Rα :
⊕k

i=1 Z → Y and Sα : Y →
⊕k

i=1 Z so that RαSα = Tα

and ‖Rα‖‖Sα‖ ≤ M̃‖Tα‖, that is, the product map

ϕ : F
( ⊕k

i=1
Z, Y

)
×F

(
Y,

⊕k

i=1
Z

)
→ F(Y )

is M̃ -open.

5. Tsirelson-like spaces

As announced earlier, in the final section of this paper we establish the non-

amenability of the algebra of approximable operators on the Tsirelson space.

In fact, we shall obtain this as a consequence of a more general result (see

Theorem 5.6 below).

We start with a definition. It is closely related to the old notion of crude

finite representability introduced in [12].

Definition 5.1: A Banach space Y is said to be M-crudely π-finitely repre-

sentable in a Banach space Z if for every finite-dimensional subspace E of Y ,

there exist a finite-rank projection P : Y → Y whose range contains E, and

operators S : Y → Z and R : Z → Y such that RS = P and ‖R‖‖S‖ ≤ M .

This last definition is justified by the following.
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Lemma 5.2: Let Y be a π1-space and let Z be a Banach space. Then all the

following are equivalent:

a) Y is (M + ε)-crudely π-finitely representable in Z for every ε > 0.

b) F(Z, Y ) ×F(Y, Z) → F(Y ) is (M + ε)-open for every ε > 0.

c) For every ε > 0 there exists in F(Y ) a bounded net of projections,

(Pα), converging strongly to the identity operator on Y , and such that

supα γZ(Pα) ≤ M + ε, that is, such that Z contains PαY ’s uniformly

(M + ε)-complemented.

Proof. It is easy to see that (a) ⇒ (b) and (b) ⇒ (c). That (c) ⇒ (a) follows

from [17, Lemma 2.4].

Remark 5.3: If we simply assume in the last lemma that Y is a πλ-space, then

still (a) ⇐⇒ (c) and (a) ⇒ (b), but (b) implies that Y is (λM + ε)-crudely

π-finitely representable in Z for every ε > 0.

Before passing to the main result of the section we need another result that

we collect as a lemma.

Let E, F be Banach spaces and let 1 ≤ p ≤ ∞. Recall that we have identified

`m
p with the linear span of the first m vectors of the unit vector basis of `p, so we

have a natural linear isometry A(`m
p (E), `k

p(F )) ↪→ A(`n
p (E), `l

p(F )), whenever

n ≥ m and l ≥ k. We denote by A0(`p(E), `k
p(F )) (resp., A0(`

m
p (E), `p(F ))) the

inductive limit of the direct system formed by the spaces A(`m
p (E), `k

p(F )) (m ∈

N) (resp., A(`m
p (E), `k

p(F )) (k ∈ N)) together with the corresponding isomet-

ric embeddings. There are also natural linear isometries A0(`p(E), `k
p(F )) ↪→

A0(`p(E), `l
p(F )) and A0(`

m
p (E), `p(F )) ↪→ A0(`

n
p (E), `p(F )) (l ≥ k, n ≥ m).

We denote by A0(`p(E), `p(F )) the common inductive limit of the direct sys-

tems formed by {A0(`p(E), `k
p(F )) : k ∈ N} and {A0(`

m
p (E), `p(F )) : m ∈ N}

and their respective families of isometric embeddings. It is not hard to see

that A0(`p(E), `p(F )) is also the inductive limit of the direct system formed by

all spaces A0(`
m
p (E), `k

p(F )) and the isometric embeddings A(`m
p (E), `k

p(F )) ↪→

A(`n
p (E), `l

p(F )) (n ≥ m, l ≥ k).

Lemma 5.4: Let 1 ≤ p ≤ ∞ and let X be a Banach space such that A(X)

is K-amenable. Let P : X → X be a bounded projection. Set Y = rg P and

Z = rg (I − P ). Then at least one of the maps

ϕ1 : A0(`p(Z), `p(Y )) ×A0(`p(Y ), `p(Z)) → A0(`p(Y )),
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or

ϕ2 : A0(`p(Y ), `p(Z)) ×A0(`p(Z), `p(Y )) → A0(`p(Z)),

is (M + δ)-open for every δ > 0 and some constant M that depends only on K

and ‖P‖.

Proof. Let X be a Banach space such that A(X) is K-amenable. Then A(`n
p (X))

is K-amenable for every n ∈ N and every 1 ≤ p ≤ ∞. Let P , Y and Z be as

in the hypotheses. As ‖
⊕n

1 P : `n
p (X) → `n

p (Y )‖ = ‖P‖ (n ∈ N), there exists,

by Proposition 4.2, a constant M = M(K, ‖P‖) so that for each n ∈ N at least

one of the product maps

(5) π1,n : A(`n
p (Z), `n

p (Y ))⊗̂A(`n
p (Y ), `n

p (Z)) → A(`n
p (Y )),

or

(6) π2,n : A(`n
p (Y ), `n

p (Z))⊗̂A(`n
p (Z), `n

p (Y )) → A(`n
p (Z)),

is onto with inversion constant no greater than M .

Without loss of generality, assume there is an increasing sequence of posi-

tive integers, (nk), so that π1,nk
is onto with inversion constant no greater

than M for all k. Fix k ∈ N, let ε > 0 and let T ∈ A(`nk
p (Y )). There

is
∑

i Ri ⊗ Si ∈ A(`nk
p (Z), `nk

p (Y ))⊗̂A(`nk
p (Y ), `nk

p (Z)) such that
∑

i RiSi =

T and
∑

i ‖Ri‖‖Si‖ ≤ (M + ε)‖T ‖. Moreover, we can assume limi ‖Ri‖ =

0 = limi ‖Si‖. For each i ∈ N, let Pi denote the coordinate projection of

`p(`
nk
p (Y )) onto its i-th summand, and let ıi denote the embedding of the i-

th summand into `p(`
nk
p (Y ))). Let R =

∑
i RiPi and S =

∑
i ıiSi. Then

RS = T , ‖R‖q ≤
∑

i ‖Ri‖
q (resp., ≤ maxi ‖Ri‖ if q = ∞) and ‖S‖p ≤

∑
i ‖Si‖

p

(resp., ≤ maxi ‖Si‖ if p = ∞). Furthermore, by [16, §2], we can choose the

Ri’s and Si’s in such a way that ‖R‖‖S‖ ≤ (1 + ε)
∑

i ‖Ri‖‖Si‖, and hence

‖R‖‖S‖ ≤ (1 + ε)(M + ε)‖T ‖. As this last holds for arbitrary ε, the bilinear

map

ϕnk
: A0(`p(Z), `nk

p (Y )) ×A0(`
nk
p (Y ), `p(Z)) → A(`nk

p (Y )) (k ∈ N),

is (M + δ)-open for any δ > 0.

Now let T ∈ A0(`p(Y )) and ε > 0. There exists a sequence (Tk) in

A0(`p(Y )) such that Tk ∈ A(`nk
p (Y )) for every k,

∑
k Tk = T and

∑
k ‖Tk‖ ≤

‖T ‖ + ε. By the previous part, there exist Rk ∈ A0(`p(Z), `nk
p (Y )) and Sk ∈

A0(`
nk
p (Y ), `p(Z)) such that RkSk = Tk and ‖Rk‖‖Sk‖ ≤ (M +ε)‖Tk‖ (k ∈ N).

Let πk denote the projection of `p(`p(Z)) onto its k-th summand, and let k
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denote the natural embedding of the k-th summand back into `p(`p(Z)). Define

R =
∑

k Rkπk and S =
∑

k kSk. Then RS = T and an argument similar to

the one of the previous paragraph shows that ‖R‖‖S‖ ≤ (1+ε)(M+ε)(‖T ‖+ε).

As `p(`p(Z)) ∼= `p(Z), it follows that the product

ϕ1 : A0(`p(Z), `p(Y )) ×A0(`p(Y ), `p(Z)) → A0(`p(Y )),

is (M + δ)-open for any δ > 0.

Remark 5.5: When p > 1 things are much simpler. Indeed, in this case the

claim of the lemma can be easily obtained from Corollary 4.8.

Theorem 5.6: Let X be a Banach space with a 1-unconditional basis (xi).

Suppose there exist δ ≥ 1 and 1 ≤ p ≤ ∞ such that

(i) For each n ∈ N there is m ∈ N so that if F ⊆ [xi]
∞
i=m is a sub-

space spanned by n disjointly supported vectors then inf
{
d(F, E) :

E is a subspace of `p

}
≤ δ.

(ii) inf
{
d([xi]

n
i=1, E) : E is a subspace of `p

}
→
n

∞.

Then A(X) is not amenable.

Proof. Suppose towards a contradiction that A(X) is K-amenable for some

K ≥ 1. Let δ ≥ 1 and 1 ≤ p ≤ ∞ be as in the hypotheses. By Lemma 5.4, for

every m ∈ N at least one of the maps

ϕ1,m : A0

(
`p([xi]

∞
m+1), `p([xi]

m
1 )

)
×A0

(
`p([xi]

m
1 ), `p([xi]

∞
m+1)

)
→ A0

(
`p([xi]

m
1 )

)
,

or

ϕ2,m : A0

(
`p([xi]

m
1 ), `p([xi]

∞
m+1)

)
×A0

(
`p([xi]

∞
m+1), `p([xi]

m
1 )

)

→ A0

(
`p([xi]

∞
m+1)

)
,

is M -open, where M depends only on K and the norm of the natural projection

Pm : X → [xi]
m
i=1. But ϕ2,m cannot be open since otherwise, by Lemma 5.2,

`p([xi]
∞
m+1) would be crudely π-finitely representable in `p([xi]

m
1 ) ' `p, which

is impossible by (ii). Thus, ϕ1,m is M -open and by Lemma 5.2, `p([xi]
m
1 ) is

(M +1)-crudely π-finitely representable in `p([xi]
∞
m+1). Note that, as ‖Pm‖ = 1

for every m, M is also independent of m. Thus, for every m ∈ N and every

1 ≤ n ≤ m there exist operators

Sm,n : [xi]
n
i=1 → `p([xi]

∞
m+1) and Rm,n : `p([xi]

∞
m+1) → [xi]

n
i=1,
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so that Rm,n Sm,n = I[xi]n1
and ‖Rm,n‖‖Sm,n‖ ≤ M + 1.

What remains follows closely the proof of [3, Prop. VI.b.3]. Let Fm,n :=

Sm,n([xi]
n
1 ). By [3, Prop. V.6], there are disjointly supported vectors

y1, y2, . . . , yN in `p([xi]
∞
m+1) such that Fm,n is 2-isomorphic to a subspace

of F := [yj]
N
1 . Clearly, we can assume that all the yj ’s have finite sup-

port. Let Pk be the projection of `p([xi]
∞
m+1) onto its k-th summand. By

(i), there exists m so that inf
{
d([Pkyj]

N
j=1, E) : E a subspace of `p

}
≤ δ for

every k ∈ N. As F ⊆
( ⊕

k [Pkyj]
N
j=1

)
p
, it follows from this last and the fact

that `p
∼= `p(`p), that inf

{
d(F, E) : E a subspace of `p

}
≤ δ, and in turn that

inf
{
d([xi]

n
1 , E) : E a subspace of `p

}
≤ 2δC, contradicting (ii). Thus A(X)

cannot be amenable.

We apply Theorem 5.6 to a class of ‘Tsirelson-like’ spaces introduced in [7],

which contains the dual of the original Tsirelson’s space as a particular case.

Let us recall briefly the definition of the dual of Tsirelson’s space, T , as

given in [7, § 2]. Let (tn) denote the unit vector basis of c00 (the space of

scalar sequences with finite support). If E, F are finite, non-empty subsets of

N, we write E < F to mean that maxE < min F . For any E ⊂ N and any

x =
∑

n αntn ∈ c00, define Ex :=
∑

n∈E αntn. Set ‖ . ‖0 := ‖ . ‖c0
and, for

m ≥ 0, define

‖x‖m+1 := max

{
‖x‖m, 2−1 max

[ k∑

j=1

‖Ejx‖m

]}
(x ∈ c00),

where the inner maximum is taken over all possible choices of finite subsets

E1, E2, . . . , Ek of N, such that: {k} ≤ E1 < E2 < . . . < Ek. It is easily verified

that ‖ . ‖m is a norm on c00 for every m, and that, for each x ∈ c00 the sequence

(‖ . ‖m) is non-decreasing and majorized by ‖x‖`1 . Thus we can define

‖x‖ := lim
m→∞

‖x‖m (x ∈ c00).

The latter is a norm on c00. The dual T ∗ of Tsirelson’s space is defined as the

completion of c00 in the last norm. It is well-known that the sequence (tn) is a

normalized 1-unconditional basis for T ∗.

For 1 ≤ p < ∞, T (p) is defined as the set of all x =
∑

n αntn such that∑
n |αn|

ptn ∈ T ∗, endowed with the norm

‖x‖(p) =

∥∥∥∥
∑

n

|αn|
ptn

∥∥∥∥
1
p

(x ∈ T (p)).
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When 1 < p < ∞, T (p) is the so called p-convexified Tsirelson’s space.

Clearly, T (1) is nothing but T ∗ itself.

Many important facts about T ∗(= T (1)) are shared by the p-convexified

Tsirelson’s spaces. Among them we have the following:

a) Each T (p) is reflexive (actually, they are all uniformly convex for p > 1);

b) Each T (p) contains `n
p ’s uniformly (1 < p < ∞);

c) No T (p) contains an isomorphic copy of `r (1 ≤ r ≤ ∞).

Moreover, for every p ≥ 1 the norm on T (p) satisfies

(7) ‖x‖(p) = max

{
‖x‖0, 2

− 1
p sup

[∑k

j=1
‖Ejx‖

p
(p)

] 1
p

}
(x ∈ T (p)),

where the inner supremum is taken over all choices of finite subsets of N,

E1, E2, . . . , Ek, such that: {k} ≤ E1 < E2 < · · · < Ek. Property (b) above

follows easily from (7).

We need one more fact about these spaces that we collect in the next lemma.

Lemma 5.7: Let 1 ≤ p < ∞. Then T (p) is not crudely finitely representable in

`p.

As explained in [3, VI.B], this follows on combining results of Lindenstrauss

and Pelczynski [20], and Lindenstrauss and Rosenthal [21]. Precisely, it follows

from [20, Remark after Prop. 5.2] (see [22, Corollary 8.9] for a proof of this) that

if X is a Banach space complemented in its bidual such that for some 1 ≤ p < ∞,

sup{γp(IE) : E a finite-dimensional subspace of X} < ∞, then X is isomorphic

to a complemented subspace of an Lp(µ) space. On the other hand, if X is a

complemented subspace of an Lp(µ) space, which is not isomorphic to a Hilbert

space, then it must be an Lp space [21, Theorem III(b)], and hence it must

contain a complemented subspace isomorphic to `p [20, Proposition 7.3]. Thus,

if T (p) (1 ≤ p < ∞) were crudely finitely representable in `p then it would

embed complementably in some Lp(µ). But T (p) contains `n
p ’s uniformly, and

so it would contain a complemented copy of `p, which is an absurd.

Corollary 5.8: The algebra A(T (p)) (1 ≤ p < ∞) is not amenable.

Proof. We simply note that T (p) satisfies conditions (i) and (ii) of Theorem 5.6

(1 ≤ p < ∞). Indeed, (i) is an immediate consequence of [2, Proposition 7.3]

and (7) above, while (ii) follows easily from Lemma 5.7.
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Remark 5.9: By [9, Corollary 5.5], A(T ) cannot be amenable either.
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