34 research outputs found

    The reflectivity of relativistic ultra-thin electron layers

    Full text link
    The coherent reflectivity of a dense, relativistic, ultra-thin electron layer is derived analytically for an obliquely incident probe beam. Results are obtained by two-fold Lorentz transformation. For the analytical treatment, a plane uniform electron layer is considered. All electrons move with uniform velocity under an angle to the normal direction of the plane; such electron motion corresponds to laser acceleration by direct action of the laser fields, as it is described in a companion paper. Electron density is chosen high enough to ensure that many electrons reside in a volume \lambda_R^3, where \lambda_R is the wavelength of the reflected light in the rest frame of the layer. Under these conditions, the probe light is back-scattered coherently and is directed close to the layer normal rather than the direction of electron velocity. An important consequence is that the Doppler shift is governed by \gamma_x=(1-(V_x/c)^2)^{-1/2} derived from the electron velocity component V_x in normal direction rather than the full \gamma-factor of the layer electrons.Comment: 7 pages, 4 figures, submitted to the special issue "Fundamental Physics with Ultra-High Fields" in The European Physical Journal

    Acceleration of ultra-thin electron layer. Analytical treatment compared with 1D-PIC simulation

    Full text link
    In this paper, we apply an analytical model [V.V. Kulagin et al., Phys. Plasmas 14,113101 (2007)] to describe the acceleration of an ultra-thin electron layer by a schematic single-cycle laser pulse and compare with one-dimensional particle-in-cell (1D-PIC) simulations. This is in the context of creating a relativistic mirror for coherent backscattering and supplements two related papers in this EPJD volume. The model is shown to reproduce the 1D-PIC results almost quantitatively for the short time of a few laser periods sufficient for the backscattering of ultra-short probe pulses.Comment: 4 pages, 4 figures, submitted to the special issue "Fundamental Physics with Ultra-High Fields" in The European Physical Journal

    Coulomb implosion mechanism of negative ion acceleration in laser plasmas

    Full text link
    Coulomb implosion mechanism of the negatively charged ion acceleration in laser plasmas is proposed. When a cluster target is irradiated by an intense laser pulse and the Coulomb explosion of positively charged ions occurs, the negative ions are accelerated inward. The maximum energy of negative ions is several times lower than that of positive ions. The theoretical description and Particle-in-Cell simulation of the Coulomb implosion mechanism and the evidence of the negative ion acceleration in the experiments on the high intensity laser pulse interaction with the cluster targets are presented.Comment: 4 page

    Stability improvement of a laser-accelerated electron beam and the pulse width measurement of the electron beam

    No full text
    Laser wakefield acceleration has the possibility to generate an ultrashort electron beam of the order of femtoseconds or less. In applications of these laser accelerated electron beams, stable and controllable electron beams are necessary. A high stability electron bunch is generated by laser wakefield acceleration with the help of a colliding laser pulse (optical injection). Stable and monoenergetic electron beams have been generated in the self-injection scheme of laser acceleration by using a Nitrogen gas jet target. The electron interaction with the laser field results in transverse oscillations of the electron beam. From the electron oscillation period dependence on the electron energy we find that the electron beam width is equal to 1.7 fs (rms).Π’ процСссС ускорСния ΠΊΠΈΠ»ΡŒΠ²Π°Ρ‚Π΅Ρ€Π½Ρ‹ΠΌΠΈ Π²ΠΎΠ»Π½Π°ΠΌΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Π° гСнСрация свСрхкоротких элСктронных ΠΏΡƒΡ‡ΠΊΠΎΠ² фСмтосСкундной Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ. Для ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ элСктронныС ΠΏΡƒΡ‡ΠΊΠΈ с воспроизводимыми ΠΈ ΠΊΠΎΡ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅ΠΌΡ‹ΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ. ΠžΠΏΡ‚ΠΈΡ‡Π΅ΡΠΊΠ°Ρ инТСкция, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰Π°Ρ ΡΡ‚Π°Π»ΠΊΠΈΠ²Π°ΡŽΡ‰ΠΈΠ΅ΡΡ Π»Π°Π·Π΅Ρ€Π½Ρ‹Π΅ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΡ‹, обСспСчиваСт Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Π²ΠΎΡΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΏΡƒΡ‡ΠΊΠΎΠ² ускорСнных элСктронов. ΠœΠΎΠ½ΠΎΡΠ½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ ΠΏΡƒΡ‡ΠΊΠΈ элСктронов с воспроизводимыми ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΏΡ€ΠΈ «самоинТСкции» Π² ΠΊΠΈΠ»ΡŒΠ²Π°Ρ‚Π΅Ρ€Π½ΡƒΡŽ Π²ΠΎΠ»Π½Ρƒ Π² экспСримСнтах, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‰ΠΈΡ… Π² качСствС мишСни ΡΡ‚Ρ€ΡƒΡŽ Π°Π·ΠΎΡ‚Π°. ВзаимодСйствиС элСктронов с ΠΈΠ·Π»ΡƒΡ‡Π΅Π½ΠΈΠ΅ΠΌ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ ΠΈΠΌΠΏΡƒΠ»ΡŒΡΠ° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½Ρ‹ΠΌ осцилляциям элСктронного ΠΏΡƒΡ‡ΠΊΠ°. Анализ наблюдаСмой Π² экспСримСнтС зависимости ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π° осцилляций ΠΎΡ‚ энСргии элСктронов позволяСт Π½Π°ΠΉΡ‚ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ элСктронного ΠΏΡƒΡ‡ΠΊΠ°, Ρ€Π°Π²Π½ΡƒΡŽ 1.7 фс.Π’ процСсі прискорСння ΠΊΡ–Π»ΡŒΠ²Π°Ρ‚Π΅Ρ€Π½ΠΈΠΌΠΈ хвилями ΠΌΠΎΠΆΠ»ΠΈΠ²Π° гСнСрація Π½Π°Π΄ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΈΡ… ΠΏΡƒΡ‡ΠΊΡ–Π² фСмтосСкундної тривалості. Для Π΄ΠΎΠ΄Π°Ρ‚ΠΊΡ–Π² ΠΏΠΎΡ‚Ρ€Ρ–Π±Π½Ρ– Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½Ρ– ΠΏΡƒΡ‡ΠΊΠΈ Π· Π²Ρ–Π΄Ρ‚Π²ΠΎΡ€ΡŽΡŽΡ‡ΠΈΠΌΠΈ Ρ– ΠΊΠΎΡ‚Ρ€ΠΎΠ»ΡŽΡŽΡ‡ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ. ΠžΠΏΡ‚ΠΈΡ‡Π½Π° інТСкція, Ρ‰ΠΎ використовує Π·Ρ–ΡˆΡ‚ΠΎΠ²Ρ…ΡƒΡŽΡ‡Ρ– Π»Π°Π·Π΅Ρ€Π½Ρ– Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΠΈ, Π·Π°Π±Π΅Π·ΠΏΠ΅Ρ‡ΡƒΡ” високу Π²Ρ–Π΄Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Π½Ρ–ΡΡ‚ΡŒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ–Π² ΠΏΡƒΡ‡ΠΊΡ–Π² прискорСних Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–Π². ΠœΠΎΠ½ΠΎΠ΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½Ρ– ΠΏΡƒΡ‡ΠΊΠΈ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–Π² Π· Π²Ρ–Π΄Ρ‚Π²ΠΎΡ€ΡŽΠ²Π°Π½ΠΈΠΌΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ Π±ΡƒΠ»ΠΈ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– ΠΏΡ€ΠΈ «самоінТСкції» Π² ΠΊΡ–Π»ΡŒΠ²Π°Ρ‚Π΅Ρ€Π½Ρƒ Ρ…Π²ΠΈΠ»ΡŽ Π² СкспСримСнтах, Π² яких Π² якості ΠΌΡ–ΡˆΠ΅Π½Ρ– використовувалася ΡΡ‚Ρ€ΡƒΠΌΡ–Π½ΡŒ Π°Π·ΠΎΡ‚Ρƒ. Взаємодія Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–Π² Π· Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½ΡΠΌ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ Ρ–ΠΌΠΏΡƒΠ»ΡŒΡΡƒ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΈΡ… осциляцій Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‡ΠΊΠ°. Аналіз ΡΠΏΠΎΡΡ‚Π΅Ρ€Ρ–Π³Π°ΡŽΡ‡ΠΎΡ— Π² СкспСримСнті залСТності ΠΏΠ΅Ρ€Ρ–ΠΎΠ΄Ρƒ осциляцій Π²Ρ–Π΄ Π΅Π½Π΅Ρ€Π³Ρ–Ρ— Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Ρ–Π² дозволяє Π·Π½Π°ΠΉΡ‚ΠΈ Ρ‚Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŒ Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‡ΠΊΠ°, яка Π΄ΠΎΡ€Ρ–Π²Π½ΡŽΡ” 1.7 фс

    Observation of Burst Intensification by Singularity Emitting Radiation generated from relativistic plasma with a high-intensity laser

    Get PDF
    Coherent x-rays via the Burst Intensification by Singularity Emitting Radiation (BISER) mechanism are generated from relativistic plasma in helium gas target. A broad modulation of the BISER spectrum, which is significantly wider than the harmonic order, is observed and characterized. In particular, we found that the modulation period can be as large as 41 eV

    High order harmonics from relativistic electron spikes

    Get PDF
    A new regime of relativistic high-order harmonic generation is discovered [Phys. Rev. Lett. 108, 135004 (2012)]. Multi-terawatt relativistic-irradiance (>1018 W/cm2) femtosecond (~30-50 fs) lasers focused to underdense (fewΓ—1019 cm-3) plasma formed in gas jet targets produce comb-like spectra with hundreds of even and odd harmonic orders reaching the photon energy of 360 eV, including the 'water window' spectral range. Harmonics are generated by either linearly or circularly polarized pulses from the J-KAREN (KPSI, JAEA) and Astra Gemini (CLF, RAL, UK) lasers. The photon number scalability has been demonstrated with a 120 TW laser producing 40 ΞΌJ/sr per harmonic at 120 eV. The experimental results are explained using particle-in-cell (PIC) simulations and catastrophe theory. A new mechanism of harmonic generation by sharp, structurally stable, oscillating electron spikes at the joint of boundaries of wake and bow waves excited by a laser pulse is introduced. In this paper detailed descriptions of the experiments, simulations and model are provided and new features are shown, including data obtained with a two-channel spectrograph, harmonic generation by circularly polarized laser pulses and angular distribution

    Blood Content of Markers of Inflammation and Cytokines in Patients With Alcoholic Cardiomyopathy and Ischemic Heart Disease at Various Stages of Heart Failure

    No full text
    We conducted a comparative study of content proinflammatory cytokines, biomarkers of inflammatory process, biochemical indicators of congestive heart failure (CHF) and hemodynamic parameters in patients with alcoholic cardiomyopathy (ACMP) and ischemic heart disease (IHD) with various NYHA classes. We examined 62 men with ACMP (n = 45) and IHD (n = 17) and NYHA class III-IV CHF. Patients of both groups had lowered ejection fraction (EF), dilated cardiac chambers, and increased left ventricular (LV) myocardial mass index (MMI). Relative LV wall thickness was within normal limits but in the ACMP group it was significantly lower than in IHD group what corresponded to the eccentric type of myocardial hypertrophy. Higher NYHA class was associated with lower EF and larger end diastolic and end systolic LV dimensions. In ACMP it was also associated with larger dimension of the right ventricle while in IHD with substantially larger (by 30%) dimension of atria. Substantial amount of endotoxin found in blood plasma of patients with IHD corresponded to the conception of increased intestinal permeability of in CHF. Alcohol abuse was an aggravating factor of endotoxin transmission and its concentration in patients with ACMP was 3 times higher than in patients with IHD. Patients with ACMP had substantially elevated blood concentrations of interleukins (IL) 6, 8, 12, tumor necrosis factor alpha (TNF-alpha), and its soluble receptor s-TNF-R; they also had twofold elevation of C-reactive protein concentration. ACMP was associated with manifold rise of blood content of brain natriuretic peptide (BNP). Patients with IHD also had elevated blood concentrations of IL 6, 8 and 12 but their values were 1.5-2 times lower than ACMP group. Blood content of TNF-alpha and s-TNF-R in IHD group was within normal limits. Higher NYHA class in ACMP patients was associated with higher concentrations of IL 6 and 8, TNF-alpha, and BNP. In both groups of patients contents of IL-12, s-TNF-R, TGF-1 beta and factors of acute phase of inflammation did not reflect severity of CHF. Functional insufficiency of myocardium in IHD patients was best characterized by blood content of IL-6 while in ACMP patients of BNP
    corecore