642 research outputs found

    An analytical treatment of in-plane magnetotransport in the Falicov-Sievert model

    Full text link
    We derive an analytical expression which allows efficient computation of the effect of all the Fermi surface trajectories induced by a combination of Bragg scattering and magnetic breakdown on the in-plane components of the resistivity tensor. The particular network of coupled orbits which we consider was first formulated by Falicov and Sievert, who studied the problem numerically. Our approach, based upon a method used previously to derive an analytical solution for interlayer transport, allows us to show that the conductivity tensor can be written as a sum of a matrix representing the effect of total magnetic breakdown and one representing a combination of complex electronic trajectories, and we find a compact expression for the in-plane components of the resistivity tensor that can be evaluated straightforwardly.Comment: 4 pages, 4 figure

    Breakdown of weak-field magnetotransport at a metallic quantum critical point

    Full text link
    We show how the collapse of an energy scale in a quantum critical metal can lead to physics beyond the weak-field limit usually used to compute transport quantities. For a density-wave transition we show that the presence of a finite magnetic field at the critical point leads to discontinuities in the transport coefficients as temperature tends to zero. The origin of these discontinuities lies in the breakdown of the weak field Jones-Zener expansion which has previously been used to argue that magneto-transport coefficients are continuous at simple quantum critical points. The presence of potential scattering and magnetic breakdown rounds the discontinuities over a window determined by tau Delta < 1 where Delta is the order parameter and tau is the quasiparticle elastic lifetime.Comment: 4 pages, 3 figures RevTeX forma

    Intervalley-Scattering Induced Electron-Phonon Energy Relaxation in Many-Valley Semiconductors at Low Temperatures

    Full text link
    We report on the effect of elastic intervalley scattering on the energy transport between electrons and phonons in many-valley semiconductors. We derive a general expression for the electron-phonon energy flow rate at the limit where elastic intervalley scattering dominates over diffusion. Electron heating experiments on heavily doped n-type Si samples with electron concentration in the range 3.516.0×10253.5-16.0\times 10^{25} m3^{-3} are performed at sub-1 K temperatures. We find a good agreement between the theory and the experiment.Comment: v2: Notations changed: Δi\Delta_i --> δvi\delta v_i, τeff\tau_{eff} removed. Eq. (1) changed, Eq. (2) added and complete derivation of Eq. (3) included. Some further discussion about single vs. many valley added [3rd paragraph after Eq. (7)]. End notes removed and new reference added [Kragler and Thomas]. Typos in references correcte

    Experimental phase diagram of moving vortices

    Full text link
    In the mixed state of type II superconductors, vortices penetrate the sample and form a correlated system due to the screening of supercurrents around them. Interestingly, we can study this correlated system as a function of density and driving force. The density, for instance, is controlled by the magnetic field, B, whereas a current density j acts as a driving force F=jxB on all vortices. The free motion of vortices is inhibited by the presence of an underlying potential, which tends to pin the vortices. Hence, to minimize the pinning strength we studied a superconducting glass in which the depinning current is 10 to 1000 times smaller than in previous studies, which enables us to map out the complete phase diagram in this new regime. The diagram is obtained as a function of B, driving current and temperature and led a remarkable set of new results, which includes a huge peak effect, an additional reentrant depinning phase and a driving force induced pinning phase.Comment: 4 page

    Multiorbital effects on the transport and the superconducting fluctuations in LiFeAs

    Full text link
    The resistivity, Hall effect and transverse magnetoresistance (MR) have been measured in low residual resistivity single crystals of LiFeAs. A comparison with angle resolved photoemission spectroscopy and quantum oscillation data implies that four carrier bands unevenly contribute to the transport. However the scattering rates of the carriers all display the T^2 behavior expected for a Fermi liquid. Near Tc low field deviations of the MR with respect to a H^2 variation permit us to extract the superconducting fluctuation contribution to the conductivity. Though below Tc the anisotropy of superconductivity is rather small, the superconducting fluctuations display a quasi ideal two-dimensional behavior which persists up to 1.4 Tc. These results call for a refined theoretical understanding of the multiband behavior of superconductivity in this pnictide.Comment: 8pages with supplementary material, 6 figure

    A precursor state to unconventional superconductivity in CeIrIn5{_5}

    Full text link
    We present sensitive measurements of the Hall effect and magnetoresistance in CeIrIn5{_5} down to temperatures of 50 mK and magnetic fields up to 15 T. The presence of a low temperature coherent Kondo state is established. Deviations from Kohler's rule and a quadratic temperature dependence of the cotangent of the Hall angle are reminiscent of properties observed in the high temperature superconducting cuprates. The most striking observation pertains to the presence of a \textit{precursor} state--characterized by a change in the Hall mobility--that appears to precede the superconductivity in this material, in similarity to the pseudogap in the cuprate high TcT_c superconductors.Comment: 4 figure

    Magnetic Domains in Magnetar Matter as an Engine for Soft Gamma-ray Repeaters and Anomalous X-ray Pulsars

    Full text link
    Magnetars have been suggested as the most promising site for the origin of observed soft gamma-ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs). In this work we investigate the possibility that SGRs and AXPs might be observational evidence for a magnetic phase separation in magnetars. We study magnetic domain formation as a new mechanism for SGRs and AXPs in which magnetar-matter separates into two phases containing different flux densities. We identify the parameter space in matter density and magnetic field strength at which there is an instability for magnetic domain formation. We conclude that such instabilities will likely occur in the deep outer crust for the magnetic Baym, Pethick, and Sutherland (BPS) model and in the inner crust and core for magnetars described in relativistic Hartree theory. Moreover, we estimate that the energy released by the onset of this instability is comparable with the energy emitted by SGRs.Comment: 4 figures, ApJ in pres

    Critical Ultrasonics Near the Superfluid Transition : Finite Size Effects

    Full text link
    The suppression of order parameter fluctuations at the boundaries causes the ultrasonic attenuation near the superfluid transition to be lowered below the bulk value. We calculate explicitly the first deviation from the bulk value for temperatures above the lambda point. This deviation is significantly larger than for static quantities like the thermodynamic specific heat or other transport properties like the thermal conductivity. This makes ultrasonics a very effective probe for finite size effects.Comment: 10 pages (LaTeX), 1 figure (PostScript

    Electron-Beam Driven Relaxation Oscillations in Ferroelectric Nanodisks

    Get PDF
    Using a combination of computational simulations, atomic-scale resolution imaging and phenomenological modelling, we examine the underlying mechanism for nanodomain restructuring in lead zirconate titanate (PZT) nanodisks driven by electron beams. The observed subhertz nanodomain dynamics are identified with relaxation oscillations where the charging/discharging cycle time is determined by saturation of charge traps and nanodomain wall creep. These results are unusual in that they indicate very slow athermal dynamics in nanoscale systems.Comment: 5 pages, 2 figure

    Large magnetoresistance in the magnetically ordered state as well as in the paramagnetic state near 300 K in an intermetallic compound,Gd7Rh3

    Full text link
    We report the response of electrical resistivity ρ\rho to the application of magnetic fields (H) up to 140 kOe in the temperature interval 1.8-300 K for the compound, Gd7Rh3, ordering antiferromagnetically below 150 K. We find that there is an unusually large decrease of ρ\rho for moderate values of H in the close vicinity of room temperature uncharacteristic of paramagnets, with the magnitude of the magnetoresistance increasing with decreasing temperature as though the spin-order contribution to ρ\rho is temperature dependent. In addition, this compound exhibits giant magnetoresistance behaviour at rather high temperatures (above 77 K) in the magnetically ordered state due to a metamagnetic transition.Comment: Europhyics Letters, in pres
    corecore