190 research outputs found

    The process of prioritization of non-communicable diseases in the global health policy arena.

    Get PDF
    Although non-communicable diseases (NCDs) are the leading cause of morbidity and mortality worldwide, the global policy response has not been commensurate with their health, economic and social burden. This study examined factors facilitating and hampering the prioritization of NCDs on the United Nations (UN) health agenda. Shiffman and Smith's (Generation of political priority for global health initiatives: a framework and case study of maternal mortality. The Lancet 370: 1370-9.) political priority framework served as a structure for analysis of a review of NCD policy documents identified through the World Health Organization's (WHO) NCD Global Action Plan 2013-20, and complemented by 11 semi-structured interviews with key informants from different sectors. The results show that a cohesive policy community exists, and leaders are present, however, actor power does not extend beyond the health sector and the role of guiding institutions and civil society have only recently gained momentum. The framing of NCDs as four risk factors and four diseases does not necessarily resonate with experts from the larger policy community, but the economic argument seems to have enabled some traction to be gained. While many policy windows have occurred, their impact has been limited by the institutional constraints of the WHO. Credible indicators and effective interventions exist, but their applicability globally, especially in low- and middle-income countries, is questionable. To be effective, the NCD movement needs to expand beyond global health experts, foster civil society and develop a broader and more inclusive global governance structure. Applying the Shiffman and Smith framework for NCDs enabled different elements of how NCDs were able to get on the UN policy agenda to be disentangled. Much work has been done to frame the challenges and solutions, but implementation processes and their applicability remain challenging globally. NCD responses need to be adapted to local contexts, focus sufficiently on both prevention and management of disease, and have a stronger global governance structure

    Structural and functional diversity among agonist-bound states of the GLP-1 receptor

    Get PDF
    Recent advances in G-protein-coupled receptor (GPCR) structural elucidation have strengthened previous hypotheses that multidimensional signal propagation mediated by these receptors depends, in part, on their conformational mobility; however, the relationship between receptor function and static structures is inherently uncertain. Here, we examine the contribution of peptide agonist conformational plasticity to activation of the glucagon-like peptide 1 receptor (GLP-1R), an important clinical target. We use variants of the peptides GLP-1 and exendin-4 (Ex4) to explore the interplay between helical propensity near the agonist N terminus and the ability to bind to and activate the receptor. Cryo-EM analysis of a complex involving an Ex4 analog, the GLP-1R and Gs heterotrimer revealed two receptor conformers with distinct modes of peptide-receptor engagement. Our functional and structural data, along with molecular dynamics (MD) simulations, suggest that receptor conformational dynamics associated with flexibility of the peptide N-terminal activation domain may be a key determinant of agonist efficacy.</p

    Breast Cancer Index is a predictive biomarker of treatment benefit and outcome from extended tamoxifen therapy: final analysis of the Trans-aTTom study

    Get PDF
    PURPOSE: The Breast Cancer Index (BCI) HOXB13/IL17BR (H/I) ratio predicts benefit from extended endocrine therapy in hormone receptor–positive (HR(+)) early-stage breast cancer. Here, we report the final analysis of the Trans-aTTom study examining BCI (H/I)'s predictive performance. EXPERIMENTAL DESIGN: BCI results were available for 2,445 aTTom trial patients. The primary endpoint of recurrence-free interval (RFI) and secondary endpoints of disease-free interval (DFI) and disease-free survival (DFS) were examined using Cox proportional hazards regression and log-rank test. RESULTS: Final analysis of the overall study population (N = 2,445) did not show a significant improvement in RFI with extended tamoxifen [HR, 0.90; 95% confidence interval (CI), 0.69–1.16; P = 0.401]. Both the overall study population and N0 group were underpowered due to the low event rate in the N0 group. In a pre-planned analysis of the N(+) subset (N = 789), BCI (H/I)-High patients derived significant benefit from extended tamoxifen (9.7% absolute benefit: HR, 0.33; 95% CI, 0.14–0.75; P = 0.016), whereas BCI (H/I)-Low patients did not (−1.2% absolute benefit; HR, 1.11; 95% CI, 0.76–1.64; P = 0.581). A significant treatment-to-biomarker interaction was demonstrated on the basis of RFI, DFI, and DFS (P = 0.037, 0.040, and 0.025, respectively). BCI (H/I)-High patients remained predictive of benefit from extended tamoxifen in the N(+)/HER2(−) subgroup (9.4% absolute benefit: HR, 0.35; 95% CI, 0.15–0.81; P = 0.047). A three-way interaction evaluating BCI (H/I), treatment, and HER2 status was not statistically significant (P = 0.849). CONCLUSIONS: Novel findings demonstrate that BCI (H/I) significantly predicts benefit from extended tamoxifen in HR(+) N(+) patients with HER2(−) disease. Moreover, BCI (H/I) demonstrates significant treatment to biomarker interaction across survival outcomes

    Laser Capture and Deep Sequencing Reveals the Transcriptomic Programmes Regulating the Onset of Pancreas and Liver Differentiation in Human Embryos.

    Get PDF
    To interrogate the alternative fates of pancreas and liver in the earliest stages of human organogenesis, we developed laser capture, RNA amplification, and computational analysis of deep sequencing. Pancreas-enriched gene expression was less conserved between human and mouse than for liver. The dorsal pancreatic bud was enriched for components of Notch, Wnt, BMP, and FGF signaling, almost all genes known to cause pancreatic agenesis or hypoplasia, and over 30 unexplored transcription factors. SOX9 and RORA were imputed as key regulators in pancreas compared with EP300, HNF4A, and FOXA family members in liver. Analyses implied that current in vitro human stem cell differentiation follows a dorsal rather than a ventral pancreatic program and pointed to additional factors for hepatic differentiation. In summary, we provide the transcriptional codes regulating the start of human liver and pancreas development to facilitate stem cell research and clinical interpretation without inter-species extrapolation.This project received support from the UK Medical Research Council (MRC) (R.E.J. was a clinical research training fellow; additional funding from MR/L009986/1 to N.B. and N.A.H.; and MR/J003352/1 to K.P.H.), the Academy of Medical Sciences (supported by Wellcome Trust, MRC, British Heart Foundation, Arthritis Research UK, the Royal College of Physicians and Diabetes UK) (R.E.J.), the Society for Endocrinology (R.E.J.), the Wellcome Trust (N.A.H. was a senior fellow in clinical science, 088566; additional support from grant 105610/Z/14/Z), and the British Council and JDRF (14BX15NHBG to N.A.H.)

    Understanding VPAC receptor family peptide binding and selectivity

    Get PDF
    The vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) receptors are key regulators of neurological processes. Despite recent structural data, a comprehensive understanding of peptide binding and selectivity among different subfamily receptors is lacking. Here, we determine structures of active, Gs-coupled, VIP-VPAC1R, PACAP27-VPAC1R, and PACAP27-PAC1R complexes. Cryo-EM structural analyses and molecular dynamics simulations (MDSs) reveal fewer stable interactions between VPAC1R and VIP than for PACAP27, more extensive dynamics of VIP interaction with extracellular loop 3, and receptor-dependent differences in interactions of conserved N-terminal peptide residues with the receptor core. MD of VIP modelled into PAC1R predicts more transient VIP-PAC1R interactions in the receptor core, compared to VIP-VPAC1R, which may underlie the selectivity of VIP for VPAC1R over PAC1R. Collectively, our work improves molecular understanding of peptide engagement with the PAC1R and VPAC1R that may benefit the development of novel selective agonists

    Desacetyl-α-melanocyte stimulating hormone and α-melanocyte stimulating hormone are required to regulate energy balance.

    Get PDF
    OBJECTIVE: Regulation of energy balance depends on pro-opiomelanocortin (POMC)-derived peptides and melanocortin-4 receptor (MC4R). Alpha-melanocyte stimulating hormone (α-MSH) is the predicted natural POMC-derived peptide that regulates energy balance. Desacetyl-α-MSH, the precursor for α-MSH, is present in brain and blood. Desacetyl-α-MSH is considered to be unimportant for regulating energy balance despite being more potent (compared with α-MSH) at activating the appetite-regulating MC4R in vitro. Thus, the physiological role for desacetyl-α-MSH is still unclear. METHODS: We created a novel mouse model to determine whether desacetyl-α-MSH plays a role in regulating energy balance. We engineered a knock in targeted QKQR mutation in the POMC protein cleavage site that blocks the production of both desacetyl-α-MSH and α-MSH from adrenocorticotropin (ACTH1-39). RESULTS: The mutant ACTH1-39 (ACTHQKQR) functions similar to native ACTH1-39 (ACTHKKRR) at the melanocortin 2 receptor (MC2R) in vivo and MC4R in vitro. Male and female homozygous mutant ACTH1-39 (Pomctm1/tm1) mice develop the characteristic melanocortin obesity phenotype. Replacement of either desacetyl-α-MSH or α-MSH over 14 days into Pomctm1/tm1 mouse brain significantly reverses excess body weight and fat mass gained compared to wild type (WT) (Pomcwt/wt) mice. Here, we identify both desacetyl-α-MSH and α-MSH peptides as regulators of energy balance and highlight a previously unappreciated physiological role for desacetyl-α-MSH. CONCLUSIONS: Based on these data we propose that there is potential to exploit the naturally occurring POMC-derived peptides to treat obesity but this relies on first understanding the specific function(s) for desacetyl-α-MSH and α-MSH

    Emotional Labor in Mathematics: Reflections on Mathematical Communities, Mentoring Structures, and EDGE

    Full text link
    Terms such as "affective labor" and "emotional labor" pepper feminist critiques of the workplace. Though there are theoretical nuances between the two phrases, both kinds of labor involve the management of emotions; some acts associated with these constructs involve caring, listening, comforting, reassuring, and smiling. In this article I explore the different ways academic mathematicians are called to provide emotional labor in the discipline, thereby illuminating a rarely visible component of a mathematical life in the academy. Underlying this work is my contention that a conceptualization of labor involved in managing emotions is of value to the project of understanding the character, values, and boundaries of such a life. In order to investigate the various dimensions of emotional labor in the context of academic mathematics, I extend the basic framework of Morris and Feldman [33] and then apply this extended framework to the mathematical sciences. Other researchers have mainly focused on the negative effects of emotional labor on a laborer's physical, emotional, and mental health, and several examples in this article align with this framing. However, at the end of the article, I argue that mathematical communities and mentoring structures such as EDGE help diminish some of the negative aspects of emotional labor while also accentuating the positives.Comment: Revised version to appear in the upcoming volume A Celebration of EDGE, edited by Sarah Bryant, Amy Buchmann, Susan D'Agostino, Michelle Craddock Guinn, and Leona Harri

    Switch of noninvasive ventilation (NIV) to continuous positive airway pressure (CPAP) in patients with obesity hypoventilation syndrome: a pilot study

    Get PDF
    International audienceObesity is a major worldwide public health issue. The main respiratory complication stemming from obesity is obesity hypoventilation syndrome (OHS). Most of the OHS patients diagnosed during an exacerbation are treated with non invasive ventilation (NIV). Up to date, no prospective study has demonstrated in real life conditions the feasibility of a systematic protocoled switch of NIV to continuous positive airway pressure (CPAP), once stability is achieved

    PAX4 Enhances Beta-Cell Differentiation of Human Embryonic Stem Cells

    Get PDF
    Background Human embryonic stem cells (HESC) readily differentiate into an apparently haphazard array of cell types, corresponding to all three germ layers, when their culture conditions are altered, for example by growth in suspension as aggregates known as embryoid bodies (EBs). However, this diversity of differentiation means that the efficiency of producing any one particular cell type is inevitably low. Although pancreatic differentiation has been reported from HESC, practicable applications for the use of β-cells derived from HESC to treat diabetes will only be possible once techniques are developed to promote efficient differentiation along the pancreatic lineages. Methods and Findings Here, we have tested whether the transcription factor, Pax4 can be used to drive the differentiation of HESC to a β-cell fate in vitro. We constitutively over-expressed Pax4 in HESCs by stable transfection, and used Q-PCR analysis, immunocytochemistry, ELISA, Ca2+ microfluorimetry and cell imaging to assess the role of Pax4 in the differentiation and intracellular Ca2+ homeostasis of β-cells developing in embryoid bodies produced from such HESC. Cells expressing key β-cell markers were isolated by fluorescence-activated cell sorting after staining for high zinc content using the vital dye, Newport Green. Conclusion Constitutive expression of Pax4 in HESC substantially enhances their propensity to form putative β-cells. Our findings provide a novel foundation to study the mechanism of pancreatic β-cells differentiation during early human development and to help evaluate strategies for the generation of purified β-cells for future clinical applications
    • …
    corecore