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ABSTRACT 27	

Objective: Regulation of energy balance depends on pro-opiomelanocortin (POMC)-28	

derived peptides and melanocortin-4 receptor (MC4R). Alpha-melanocyte stimulating 29	

hormone (α-MSH) is the predicted natural POMC-derived peptide that regulates 30	

energy balance. Desacetyl-α-MSH, the precursor for α-MSH, is present in brain and 31	

blood. Desacetyl-α-MSH is considered to be unimportant for regulating energy 32	

balance despite being more potent (compared with α-MSH) at activating the appetite-33	

regulating MC4R in vitro. Thus, the physiological role for desacetyl-α-MSH is still 34	

unclear. 35	

Methods: We created a novel mouse model to determine whether desacetyl-α-MSH 36	

plays a role in regulating energy balance. We engineered a knock in targeted QKQR 37	

mutation in the POMC protein cleavage site that blocks the production of both 38	

desacetyl-α-MSH and α-MSH from adrenocorticotropin (ACTH1-39).  39	

Results: The mutant ACTH1-39 (ACTHQKQR) functions similar to native ACTH1-39 40	

(ACTHKKRR) at the melanocortin 2 receptor (MC2R) in vivo and MC4R in vitro. Male 41	

and female homozygous mutant ACTH1-39 (Pomctm1/tm1) mice develop the 42	

characteristic melanocortin obesity phenotype. Replacement of either desacetyl-α-43	

MSH or α-MSH over 14 days into Pomctm1/tm1 mouse brain significantly reverses 44	

excess body weight and fat mass gained compared to wild type (WT) (Pomcwt/wt) 45	

mice. Here, we identify both desacetyl-α-MSH and α-MSH peptides as regulators of 46	

energy balance and highlight a previously unappreciated physiological role for 47	

desacetyl-α-MSH. 48	

Conclusions: Based on these data we propose that there is potential to exploit the 49	

naturally occurring POMC-derived peptides to treat obesity but this relies on first 50	

understanding the specific function(s) for desacetyl-α-MSH and α-MSH.  51	
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1. INTRODUCTION 53	

The melanocortin system plays a significant role in the regulation of energy balance 54	

(see reviews	[1-3]). However, little is known about which specific endogenous pro-55	

opiomelanocortin (POMC)-derived peptides are responsible for regulation of appetite, 56	

metabolism, and body weight. The POMC protein is inherently complex and is 57	

differentially cleaved into multiple peptides in a coordinated and tissue-specific 58	

manner [4]. POMC is a prohormone and its processing involves proteolytic cleavages 59	

at specific pairs of basic amino acids performed by enzymes, prohormone converting 60	

enzyme 1 (PC1), prohormone converting enzyme 2 (PC2) and carboxypeptidase E 61	

(CPE) (reviewed in [5]). In brain and pituitary pars distalis and pituitary pars 62	

intermedia, POMC is cleaved by PC1 to produce multiple peptides including ACTH1-63	

39 and β-lipotrophin (β-LPH). PC2 is selectively expressed in brain and pituitary pars 64	

intermedia and it cuts ACTH1-39 further at tandem dibasic residues, KKRR, to produce 65	

ACTH1-17 and corticotropin-like intermediate lobe peptide (CLIP). CPE subsequently 66	

removes basic amino acids at the C-terminus of ACTH1-17 to produce ACTH1-13. Post-67	

translational processing of ACTH1-13 produces desacetyl-α-MSH, α-MSH 68	

(monoacetylated) and diacetyl-α MSH. PC2 also cuts β-LPH to generate γ-LPH and 69	

β-endorphin. 70	

One POMC-derivative, β-endorphin, stimulates food intake [6-8] while four POMC-71	

derived peptides, ACTH1-39, α-MSH, β-MSH and γ2-MSH reduce food intake [6, 9, 72	

10]. A sixth peptide, desacetyl-α-MSH, also reduces food intake, but in 73	

pharmacological studies requires a 25-times higher dose than α-MSH [9]. For this 74	

reason, desacetyl-α-MSH has been considered to be unimportant for the regulation of 75	
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energy balance [5, 11, 12]. However, there is a higher abundance of desacetyl-α-MSH 76	

compared with α-MSH in rat hypothalamus [13, 14]. In addition, desacetyl-α-MSH 77	

(compared with α-MSH) is more potent at activating the appetite-regulating MC4R in 78	

vitro [1]. Thus, the physiological role of desacetyl-α-MSH still remains unclear. 79	

The melanocortin peptides differentially activate five melanocortin receptor (MCR) 80	

subtypes, each having unique tissue distributions and functions. MC3R and MC4R are 81	

highly expressed in the central nervous system and play key roles in regulating energy 82	

balance [15-17]. Multiple POMC-derived peptides activate MC3R and MC4R in vitro 83	

[18-20]. However, it is unknown whether these peptides have distinct or redundant 84	

roles in vivo [2]. Since studies have indicated that only pharmacologic concentrations 85	

of desacetyl-α-MSH (compared to α-MSH) inhibit food intake [9, 21], α-MSH is 86	

predicted to be the endogenous melanocortin peptide hormone that regulates energy 87	

balance. In addition, β-MSH is not present in rodents [22]. Here, we determined the 88	

direct contribution of desacetyl-α-MSH and α-MSH in regulating energy balance.  89	

 90	

2. MATERIALS AND METHODS 91	

2.1. Generation and maintenance of Pomctm1 targeted mutation mouse model. 92	

The objective of this study is to develop a mouse model with a targeted Pomc 93	

mutation that prevents production of desacetyl-α-MSH and α-MSH and then use this 94	

model to determine whether desacetyl-α-MSH plays a role in energy balance. Ozgene 95	

Pty Ltd (Bentley DC, WA, Australia) generated the Pomctm1Kgm† knock in mouse 96	

strain, the first targeted mutation (tm1) in the mouse Pomc gene that prevents ACTH1-97	

																																																								
† The registered nomenclature for this mouse model. 
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39 cleavage into ACTH1-17 and CLIP. We first validated that mutant ACTHQKQR 98	

(found in Pomctm1/tm1 mice) functions similar to wild type (WT) ACTHKKRR (found in 99	

Pomcwt/wt mice) both in vitro and in vivo (see Supplementary Data). A targeting vector 100	

was created containing mouse Pomc exon 3 KKRR proteolytic cleavage site mutated 101	

to QKQR with PGK-Neo selection cassette inserted downstream of WT exon 3. Lox P 102	

sites were inserted flanking WT exon 3 and the PGK-Neo selection cassette. The 103	

targeting vector was constructed from three fragments, the 5’homology arm, the 104	

3’homology arm and the lox P arm, which were all generated by PCR. Cre-105	

recombinase deletes the PGK-Neo cassette and WT exon 3 allowing the mutant 106	

QKQR exon 3 to be expressed. Following electroporation of the targeting construct 107	

into C57BL/6J Bruce4 embryonic stem (ES) cells, cells were selected for neomycin 108	

resistance. Southern blotting and PCR were used to confirm targeted ES cells. 109	

Euploid, targeted ES cells were then microinjected into Balb/cJ blastocysts and re-110	

implanted into pseudo-pregnant dams. Resultant chimeras were bred to C57BL/6J 111	

breeders to establish transmission. Black progeny that were heterozygous for the 112	

gene-targeted allele were then bred to Cre recombinase “delete” mice on C57BL/6J 113	

background (Ozgene Pty Ltd) to allow excision of the WT exon 3 and Neo selection 114	

cassette. Cre was then removed by breeding to C57BL/6J WT mice. Resulting mice 115	

were transferred to the Vernon Jensen Animal Unit at the University of Auckland 116	

(UOA) where the colony is maintained with heterozygous breeding pairs. Mice were 117	

transferred from the University of Auckland to University of Texas South Western 118	

Medical Center (UTSW) where the colony is maintained with triplicate heterozygous 119	

mouse breeding. 120	

Routine genotyping is performed by a PCR based strategy utilizing primers that 121	

anneal to Pomc exon 3 (forward 5’TGCATCCGGGCTTGCAAACTCGA3’ and 122	
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reverse 5’GGGGCAAGGAGGTTGAGAAAT3’) yielding an 820bp fragment. HaeII 123	

restriction enzyme is used to cleave the 802 bp fragment to yield 514bp, 234bp and 54 124	

bp fragments. The QKQR mutation destroyed one of the HaeII sites and therefore 125	

HaeII cleaves the homozygous KI to yield 568bp and 234bp fragments.  126	

 127	

2.2. Ethics and animal husbandry. 128	

All experimental procedures involving mice at the Vernon Jensen Animal Facility, 129	

UOA, were approved by the Auckland University Animal Ethics Committee and 130	

conformed to The Animal Welfare Act 1999. Animals were housed up to 6 per cage 131	

on wood-chip bedding and maintained at room ambient 20°C with a 12-h dark-light 132	

cycle (lights on at 07:00 h in a pathogen-free barrier facility. The mice were fed 133	

regular chow (Teklad Global 18% protein rodent diet 2018 [Harlan Laboratories, Inc., 134	

Madison, WI, USA]). All experimental procedures for the metabolic cages were 135	

performed at UTSW and were approved by the IACUC committee at UTSW. The 136	

Pomctm1Kgm mouse breeding colony was established at UTSW to produce mice for 137	

testing in metabolic cages. At UTSW, mice were bred and housed in a barrier facility 138	

at room ambient 22-24°C on a 12 h light/12 h dark cycle and were provided standard 139	

chow (2016; Harlan Teklad) as well as water ad libitum. All experimental procedures 140	

involving mice at University of Cambridge were carried out in accordance with the 141	

guidelines of the United Kingdom Home Office. Animals were kept under controlled 142	

temperature (22°C) and 12 h light, 12 h dark schedule (lights on 7:00-19.00). 143	

 144	

2.3. Growth and development. 145	

Groups comprising Pomcwt/wt, Pomcwt/tm1 and Pomctm1/tm1 mice of each sex were 146	

weighed biweekly from weaning until 19-20 weeks of age. Significant differences 147	
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were determined using two-way repeated-measures ANOVA and Bonferroni post-hoc 148	

test. Examination of both sexes allowed for assessment of sexually dimorphic 149	

phenotypes. At 27-30 weeks, the mice were fasted overnight before being euthanized 150	

with isoflurane, blood collected by cardiac puncture and nose-anus and anus-tail tip 151	

measurements recorded. Significant differences were determined using one-way 152	

ANOVA and Tukey’s post-hoc test.  153	

 154	

2.4. Body Composition. 155	

Body composition was analyzed by magnetic resonance imaging (MRI) at the 156	

University of Auckland and nuclear magnetic resonance (NMR) at UTSW. MRI was 157	

used to assess body composition of Pomcwt/wt, Pomcwt/tm1 and Pomctm1/tm1 mice and to 158	

compare body composition of male Pomctm1/tm1 mice following melanocortin peptide 159	

treatment. NMR (minispec, Bruker) was used to compare body composition prior to 160	

metabolic cage experiments. MRI was performed using a 4.7T horizontal bore magnet 161	

interfaced with a UnityInova spectrometer (Agilent Technologies, Santa Clara, CA, 162	

USA). The anaesthetized animals were placed in a 72mm ID circularly-polarized 163	

radio-frequency coil for imaging (m2m Imaging, Cleveland, OH, USA). Localizer 164	

images were used to determine the appropriate position and number of slices to ensure 165	

that all of the animal's tissue was included in the body composition assessment. The 166	

scans to determine the body composition of the animals used the three-point Dixon 167	

technique [23] on a set of contiguous, 1mm thick slices with a field-of-view of 110 x 168	

55 mm and the imaging matrix set to 256 x128. The repetition time (TR) was 1000 ms 169	

and the echo times were specified so that one in-phase image (0º) and two out-of-170	

phase images (-180º, 180º) were acquired. All image processing to extract the fat and 171	

lean-tissue images from the MRI data and to determine the body composition was 172	
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performed with MATLAB (Mathworks Inc., Natick, MA, USA) using previously 173	

described techniques [23]. Significant differences were determined using one-way 174	

ANOVA and Tukey’s post-hoc test. 175	

 176	

2.5. Metabolic Cages. 177	

Metabolic measurements were obtained for male and female Pomcwt/wt and 178	

Pomctm1/tm1 mice aged ~ 4-6 weeks fed a regular chow diet or a regular chow diet and 179	

switched to a high-fat diet for the duration of the time they were housed in metabolic 180	

cages. Before each experiment body composition ad libitum fed mice was assessed 181	

using NMR spectrometer and the mice were acclimatized to individual caging for 3-4 182	

days. Mice were then transferred to metabolic chambers for an additional 4-day 183	

acclimatization period with food provided ad libitum. Following acclimatization, 184	

energy expenditure (O2 consumption) was measured by indirect calorimetry and 185	

simultaneous locomotor activity was assessed by infrared light-beam frame 186	

surrounding the cage using TSE Labmaster monitoring system (TSE Systems GmbH, 187	

Bad Homburg, Germany). Average oxygen consumption was calculated for both light 188	

and dark periods and expressed per total or lean body mass. For locomotor activity 189	

analysis, beam beaks in X- and Y- axis (ambulatory activity) was measured and 190	

summed over dark and light periods. Significant differences were determined using 191	

two-way repeated measures ANOVA and Bonferroni post-hoc analysis or unpaired 192	

two-tail Student’s t test. 193	

 194	

2.6. Central melanocortin peptide treatment. 195	

We administered melanocortin peptides to mice continuously using osmotic mini 196	

pumps but first we determined using MALDI-TOF MS that α-MSH and desacetyl-α-197	
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MSH dissolved in PBS and stored at 37°C were stable over 14 days. Aliquots of α-198	

MSH and desacetyl-α-MSH dissolved in PBS that were prepared for treatment studies 199	

were incubated in Lo-bind eppendorf tubes at 37°C. At 7, 10 and 14 days aliquots 200	

were snap frozen at -80°C. After thawing, the aliquots were centrifuged at 13,000g for 201	

2 min at 4 °C. Spots (1 µL) of each supernatant were then spiked on a MALDI-TOF 202	

plate and dried for ≥ 30 min in a vacuum dessicator. Matrix (αCyano-4-203	

hydroxycinnamic acid in 50% acetonitrile in sterile water with 0.1% TFA) was 204	

applied manually over peptides and allowed to thoroughly dry before the plate was 205	

read in a Voyager DE-Pro Mass Spectrometer (Applied Biosystems). After dissolving 206	

in PBS, melanocortin peptides were primed overnight at 37 °C in osmotic mini pumps 207	

before being administered intracerebroventricular (i.c.v.) continuously over 14 days 208	

by osmotic mini pump infusions. Group-housed mice (n= 3-6 mice per cage) 209	

underwent stereotaxic surgery under isoflurane anesthesia to implant a cannula into 210	

the lateral cerebral ventricle with the following coordinates: anterior posterior 0.1 211	

mm, medial lateral 0.9 mm with one spacer dorsal ventral. An Alzet® mini osmotic 212	

pump (Model 1002, Bio-Scientific Pty Ltd., NSW, Australia) filled either with saline 213	

vehicle (USP-IV-IM, Demo Pharmaceutical Industry, Greece) or melanocortin 214	

peptide (delivering 0.05 µg, 0.5 µg or 5 µg of peptide/ 25g mouse body weight/day) 215	

was implanted subcutaneously and was attached to the cannula using a catheter (Alzet 216	

Brain Infusion Kit 3, Bio-Scientific Pty Ltd.). Mice were allowed to recover from 217	

surgery for ~2-4 hour before being returned to their group-housed cages. Individual 218	

body weights and food and water intake for each cage were monitored daily over 14 219	

days. All mice were monitored daily for signs of ill health (not eating, starry-fur, not 220	

moving). Significant differences were determined using two-way repeated measures 221	

ANOVA and Dunnett’s post-hoc analysis. 222	
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 223	

2.7. Statistical analysis. 224	

GraphPad Prism 7 software (GraphPad Software Inc., San Diego, CA) was used to 225	

perform all statistical analyses. Comparisons between groups were made by two-way 226	

or one-way repeated or non-repeated measures ANOVA with Tukey or Bonferroni 227	

post-hoc analysis, or by 2-tailed Student ‘t’ test as indicated. Changes in body weight 228	

over time comparisons were made using repeated two-way ANOVA. P<0.05 was 229	

considered statistically significant. Data are presented as mean ± SEM. 230	

 231	

3. RESULTS 232	

3.1.  A Pomc gene targeted mutation (Pomctm1) results in biologically active 233	

QKQR mutant ACTH1-39 hormone. 234	

Deletion in the Pomc gene results in obesity in both mice [24-26] and humans [27]. 235	

However, the Pomc null mouse is not suitable for determining specific POMC-236	

derived peptide functions since it lacks all POMC-derived peptides and does not 237	

develop functional adrenal glands [24, 26, 28]. Thus, we developed a unique mouse 238	

model (Pomctm1Kgm) with a targeted QKQR mutation in the POMC protein cleavage 239	

site that is required to produce desacetyl-α-MSH and α-MSH from ACTH1-39 (Figure 240	

1A).  241	

We performed a series of biochemical and physiological studies to validate biological 242	

activity for QKQR mutant ACTH1-39 (ACTHQKQR, see amino acid alignment, Figure 243	

1B). ACTHQKQR stimulates corticosterone production similar to native ACTH1-39 244	

(ACTHKKRR) in dexamethasone-suppressed Pomcwt/wt male mice (Supplementary 245	
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Figure 1A). The ACTHQKQR, like native ACTHKKRR, is biologically active at the 246	

MC4R in vitro (Supplementary Figure 1B). Pomctm1/tm1 mice develop functional 247	

adrenal glands and produce corticosterone levels similar to Pomcwt/wt mice 248	

(Supplementary Figure 1C). These results confirm that ACTHQKQR is produced and 249	

functional in Pomctm1/tm1 mice. 250	

 251	

3.2.  ACTHQKQR protein is not cleaved to produce desacetyl-α-MSH and α-MSH. 252	

We chose pituitary to validate that the QKQR mutation blocks ACTH1-39 cleavage in 253	

vivo because POMC is abundantly expressed in pituitary pars distalis and pars 254	

intermedia while lesser amounts of POMC are expressed in the arcuate nucleus of the 255	

hypothalamus. The pituitary pars intermedia is a good surrogate for the arcuate 256	

nucleus since they both express PC2, the enzyme required for cleaving ACTH1-39 to 257	

ACTH1-17. The pars distalis and posterior lobe of the pituiatry are helpful controls 258	

since the pars distalis expresses POMC but no PC2 while the posterior lobe of the 259	

pituitary does not express either POMC or PC2. 260	

To validate that ACTHQKQR protein is not cleaved, we used Matrix Assisted Laser 261	

Desorption/Ionization (MALDI)-Time-of-Flight (TOF) Mass Spectrometry (MS) of 262	

pituitary sections and lysates (see Supplementary Methods). MALDI-TOF MS 263	

imaging of pituitary sections confirms that diacetyl-α-MSH is present in Pomcwt/wt but 264	

not in Pomctm1/tm1 pars intermedia, while phospholipid (marker for pars distalis) [29] 265	

and vasopressin (marker for posterior pituitary lobe) [29] are present in the pars 266	

distalis and posterior lobe respectively, of both Pomcwt/wt and Pomctm1/tm1 mice 267	

(Figure 1C). In addition, a signal predicted to be Arg-CLIP (1-22; cleaved from the C-268	

terminus of ACTH1-39) is only detectable in Pomcwt/wt whole pituitary lysate 269	
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(Supplementary Figure 2A), while vasopressin, J peptide and a signal predicted to be 270	

β-LPH appear in both Pomcwt/wt and Pomctm1/tm1 whole pituitary lysate 271	

(Supplementary Figure 2A, B). ACTH1-39 and β-LPH are the predominant POMC-272	

derived peptides produced in pars distalis and diacetyl-α-MSH, α-MSH and β-LPH 273	

are the predominant POMC-derived peptides produced in pars intermedia. β-274	

endorphin was not detected here but under conditions of stress, β-LPH in pars 275	

intermedia is cleaved by PC2 to produce β-endorphin [30]. Thus, in the Pomctm1/tm1 276	

mouse only the ACTHQKQR is not cleaved in vivo to produce ACTH1-13 and Arg-277	

CLIP, while all other melanocortin peptides are produced through in vivo cleavage.   278	

 279	

3.3.  N-terminal acetylation of ACTHQKQR protein in whole pituitary lysate. 280	

Surprisingly, MALDI-TOF MS showed a clear signal at m/z 4638 that appears only in 281	

Pomctm1/tm1 and not in Pomcwt/wt whole pituitary lysate (Supplementary Figure 2B). 282	

We identified this peptide as N-terminal acetylated ACTHQKQR
 using 283	

immunoprecipitation and LC-MS/MS. We determined that acetylation of ACTHQKQR 284	

does not change ACTHQKQR functional coupling at the mouse MC4R in vitro and it 285	

abolishes ACTHQKQR functional coupling of the mouse MC2R (Supplementary Figure 286	

3A, B). Therefore, acetyl-ACTHQKQR produced in pituitary, presumably in pars 287	

intermedia where desacetyl-α-MSH is normally acetylated, is not expected to affect 288	

the phenotype of Pomctm1/tm1 mice. 289	

 290	

3.4.  Male and female Pomctm1/tm1 mice develop characteristic melanocortin 291	

obesity. 292	

Despite expressing non-acetylated and acetylated ACTHQKQR, which both functionally 293	

couple to the mouse MC4R in vitro, male and female Pomctm1/tm1 mouse body weights 294	
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are significantly increased compared to Pomcwt/wt and Pomcwt/tm1 mice starting at 4-6 295	

weeks of age (Figure 1D, G), due to increased lean and fat mass. Female and male 296	

Pomctm1/tm1 body lengths are ~5% and ~3% longer respectively, compared to 297	

Pomcwt/wt or Pomcwt/tm1 mice (Figure 1E, H). Quantitative magnetic resonance 298	

imaging (MRI) analysis of whole-body tissue composition at 26-29 weeks shows 299	

significant increases in fat mass in Pomctm1/tm1 male and Pomctm1/tm1 female mice 300	

compared with Pomcwt/wt mice (Figure 1F, I). These results indicate that the absence 301	

of desacetyl-α-MSH and α-MSH is sufficient to induce the characteristic 302	

melanocortin obesity phenotype, attributed to increased fat and lean mass as well as 303	

increased body length. 304	

 305	

3.5.  Pomctm1/tm1 mouse hyperphagia is exacerbated when mice are fed high-fat 306	

diet.  307	

We next sought to determine what parameters of energy balance are altered and are 308	

causing obesity in early age. Mice (4 weeks of age) were individually housed in 309	

metabolic cages to investigate how the absence of desacetyl-α-MSH and α-MSH 310	

affects feeding behavior and energy expenditure, before differences in body weight 311	

might confound interpretation. While all Pomctm1/tm1 mice exhibit hyperphagia, we 312	

observed that male Pomctm1/tm1 mice fed a low-fat diet (LFD) have increased food 313	

intake during the light phase, while females are hyperphagic during the dark phase 314	

(Figure 2A, B). This suggests that male Pomctm1/tm1 mice have an altered feeding 315	

pattern, with abnormal food intake during the light-cycle. A deficiency in POMC or 316	

MC4R associates with hyperphagia that is exaggerated by dark-cycle food 317	

consumption (reviewed in [31, 32]) and is sensitive to dietary fat content [33, 34]. 318	

Here, we show high-fat diet (HFD) exacerbates hyperphagia in male and female 319	
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Pomctm1/tm1 mice throughout the day (Figure 2A, B), suggesting that the absence of 320	

desacetyl-α-MSH and α-MSH promotes food intake and potentially increases the 321	

palatability of HFD. 322	

 323	

3.6.  High-fat diet reduced energy expenditure for male and female Pomctm1/tm1 324	

mice. 325	

Manipulations of the melanocortin system were previously shown to impair energy 326	

expenditure, thus contributing to the obesity phenotype [34, 35]. Here, we observed 327	

that neither oxygen consumption nor locomotor activity was significantly altered in 328	

mice fed a LFD (Figure 2C - F). Interestingly, male and female Pomctm1/tm1 mice fed 329	

HFD exhibit significantly reduced oxygen consumption compared to Pomcwt/wt mice 330	

(Figure 2C, D), without changes in locomotor activity (Figure 2E, F). These data 331	

suggest that Pomctm1/tm1 mice have reduced energy expenditure when exposed to a 332	

HFD regimen. 333	

 334	

3.7.  Central administration of either desacetyl-α-MSH or α-MSH reverses 335	

Pomctm1/tm1 mouse obesity. 336	

To determine whether replacement of each peptide alone can reverse the characteristic 337	

melanocortin obesity, we continuously administered incremental doses (0.03 -3.00 338	

nmol / 25 g body weight / day) of α-MSH or desacetyl-α-MSH into adult Pomctm1/tm1 339	

mouse brains over 14 days. First, we determined that α-MSH and desacetyl-α-MSH 340	

are stable under these treatment conditions (Supplementary Figure S4). We show that 341	

either α-MSH or desacetyl-α-MSH can significantly reduce body weight in 342	

Pomctm1/tm1 mice compared with vehicle-treated age- and sex-matched control 343	

Pomctm1/tm1 mice. Treatment with 5 µg α-MSH or 5 µg desacetyl-α-MSH similarly 344	
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reduced male or female body weight (Figure 4E, F). However, α-MSH is more potent 345	

than desacetyl-α-MSH at reducing female body weight since body weight was 346	

significantly reduced following either 0.05 µg or 0.50 µg desacetyl-α-MSH but not by 347	

corresponding α-MSH doses (Figure 3A, B, F). In contrast with females, α-MSH is 348	

not more potent than desacetyl-α-MSH at decreasing male Pomctm1/tm1 mouse body 349	

weight and furthermore, there is a trend for desacetyl-α-MSH to be more potent than 350	

α-MSH (0.05 µg and 0.50 µg doses) at reducing male body weight (Figure 3C, D, F). 351	

The decreased body weight is predominantly due to fat mass loss: body weight and 352	

percent body fat measured using MRI in male Pomctm1/tm1 mice treated with either α-353	

MSH or desacetyl-α-MSH are significantly reduced compared with vehicle-treated 354	

age-matched male Pomctm1/tm1 mice (Figure 4). The mice exhibited no signs of ill 355	

health over the 14 days of treatment and therefore these hormones do not appear to 356	

have any non-specific toxic effects. 357	

 358	

4. DISCUSSION 359	

The long-held myth that desacetyl-α-MSH is biologically unimportant for body 360	

weight regulation can now be put to rest. Our novel Pomctm1/tm1 mouse identifies 361	

desacetyl-α-MSH and α-MSH as both necessary for regulating mouse energy balance. 362	

We show that preventing the production of ACTH1-13 from ACTH1-39 results in a 363	

characteristic melanocortin obesity phenotype. Furthermore, pharmacological 364	

administration of desacetyl-α-MSH or α-MSH is sufficient to reverse this phenotype. 365	

Previously, central α-MSH administration has been shown to decrease rodent food 366	

intake and body weight [10, 36, 37], but we are the first to show potent effects for 367	

desacetyl-α-MSH decreasing mouse body weight. We show this because in our study, 368	

desacetyl-α-MSH is administered to a mouse that does not make any endogenous 369	
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desacetyl-α-MSH or α-MSH. This leads to the question as to why central 370	

administration of desacetyl-α-MSH in Pomcwt/wt rodents does not decrease food intake 371	

similar to α-MSH [9]. We hypothesize that endogenous desacetyl-α-MSH and α-MSH 372	

prevent exogenously administered desacetyl-α-MSH from reducing food intake and 373	

body weight in Pomcwt/wt rodents. We propose that the balance between endogenous 374	

desacetyl-α-MSH and α-MSH levels dictates the regulation of mammalian energy 375	

homeostasis and furthermore we propose the balance of these peptides could be 376	

sexually dimorphic. Here we show sensitivity to desacetyl-α-MSH and α-MSH 377	

induced weight loss differs between the sexes; male mice exhibit similar sensitivity to 378	

desacetyl-α-MSH and α-MSH while female mice are more sensitive to α-MSH 379	

compared with desacetyl-α-MSH. This adds to a list of sexually dimorphic differences 380	

reported for POMC-derived peptide regulation of energy homeostasis [38-42]. 381	

Leptin has been shown to stimulate N-terminal acetylation of desacetyl-α-MSH to 382	

generate α-MSH in the rodent hypothalamus [12]. α-MSH is believed to be the 383	

biologically active melanocortin hormone mediating leptin inhibition of food intake 384	

because desacetyl-α-MSH, compared with α-MSH, was shown to rapidly degrade in 385	

the hypothalamus [12]. However, our study shows that desacetyl-α-MSH and α-MSH 386	

are similarly effective at reducing Pomctm1/tm1 mouse body weight when continuously 387	

infused at physiological levels into the lateral ventricle. Guo et. al. measured ~0.15 388	

pmol α-MSH and ~0.58 pmol desacetyl-α-MSH in C57BL/6J mouse hypothalamus 389	

[12]. The lowest effective dose of either hormone that we infused i.c.v. into a 35g 390	

mouse is 0.029 pmol/minute and therefore if desacetyl-α-MSH is rapidly degraded in 391	

vivo it must trigger a rapid response prior to degradation. Importantly, we determined 392	

that both α-MSH and desacetyl-α-MSH are stable when stored in PBS at 37 °C for 14 393	
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days, which are the in vivo conditions for the osmotic mini pumps. Therefore, in our 394	

study the osmotic mini pumps should always be pumping intact hormones. 395	

Our data also suggest for the first time that ACTH1-39 is not sufficient to regulate 396	

mouse body weight despite ACTH1-39 having full agonist activity at the MC4R 397	

(Supplementary Figure 3A) and the ability of exogenous ACTH1-24 administered to 398	

rodent brain to cause decreased food intake [43]. However, it is unclear whether 399	

endogenous ACTH1-39 is produced in the brain and if it is, it may not be expressed 400	

when and where MC4R are expressed. The major end-products of POMC processing 401	

detected in brain hypothalamus are desacetyl-α-MSH and β-endorphin [44, 45] while 402	

α-MSH and acetylated β-endorphin expression predominate in the brain stem [44]. 403	

Hence, Pomctm1/tm1 mouse brain is expected to express acetyl-ACTHQKQR in brain 404	

stem and yet this is not sufficient to regulate Pomctm1/tm1 mouse body weight. The 405	

acetylation reaction required for producing α-MSH is documented to occur at 406	

desacetyl-α-MSH N-terminus [4, 44, 45]. However, here we show that N-terminal 407	

acetylation occurs on ACTH1-39 when cleavage of ACTH1-39 to ACTH1-17 is 408	

prevented. Therefore in the Pomctm1/tm1 mouse, all cells and tissues that should 409	

normally express α-MSH are expected to express acetyl-ACTHQKQR.  410	

A disadvantage for our novel model is that the QKQR ACTH mutation is knocked in 411	

the mouse genome during embryogenesis and therefore it is possible that the absence 412	

of desacetyl-α-MSH and α-MSH during development contributes to the obese 413	

Pomctm1/tm1 mouse phenotype. Furthermore, our model has global removal of 414	

desacetyl-α-MSH and α-MSH and therefore we do not know whether the obese 415	

Pomctm1/tm1 mouse phenotype is due to the removal of these peptides in the brain, in 416	

the periphery, or in both brain and periphery. POMC is most abundantly expressed in 417	

the pituitary gland and expressed in lower abundance in the arcuate nucleus of the 418	
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hypothalamus, the brainstem, and in several peripheral tissues including skin, 419	

pancreas, intestine, heart and reproductive organs	[1]. However, our results do 420	

indicate that pituitary and adrenal gland development and function are unaltered in 421	

our model, as supported by normal histology and corticosterone levels respectively. 422	

This does not reflect the EC50 for ACTHQKQR that is 82-fold less than the EC50 for 423	

ACTHKKRR coupling to mMC2R (Supplementary Figure S3). We hypothesize that the 424	

negative feedback regulation of pituitary pars distalis ACTHQKQR production is 425	

significantly reduced resulting in a build-up of circulating ACTHQKQR.  ACTHQKQR is 426	

a full agonist (Supplementary Figure S3) at the mMC2R and this build- 427	

up of ACTHQKQR would account for the normal corticosterone levels in the Pomctm1/tm1 428	

mouse. The development of a conditional Pomctm1/tm1 mouse model should resolve 429	

these issues. 430	

For over 15 years we have understood that POMC-derived peptide hormones are 431	

required for regulation of food intake and energy expenditure but only now do we 432	

show that desacetyl-α-MSH and α-MSH are both key endogenous POMC-derived 433	

peptides responsible for mouse regulation of appetite, metabolism, and body weight. 434	

We hypothesize that physiological and environmental factors differentially regulate 435	

endogenous POMC-derived peptide processing leading to dynamic changes in 436	

abundance of each peptide produced in specific cell types in brain and pituitary, and 437	

these dynamic changes culminate in the regulation of appetite, metabolism and body 438	

weight. The recently discovered cannabinoid-induced ‘munchies’ mediated through 439	

POMC neurons in the brain, turning up the production of β-endorphin while turning 440	

down the production of α-MSH [46] supports this hypothesis. Our data could suggest 441	

that there is potential to exploit the naturally occurring POMC-derived peptides to 442	
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treat obesity and type-2 diabetes but this relies on first understanding the specific 443	

function(s) for desacetyl-α-MSH and α-MSH in the brain and the periphery.  444	

 445	

5. CONCLUSION 446	

We show here that desacetyl-α-MSH is indeed biologically active in vivo and like α-447	

MSH it can reduce mouse body weight and fat mass. Therefore, our study highlights a 448	

need to understand how endogenous desacetyl-α-MSH and α-MSH levels correlate 449	

with measures of energy balance and whether there are distinct or redundant roles for 450	

these POMC-derived peptides in vivo.  451	

 452	
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 630	

FIGURE LEGENDS 631	

 632	

Figure 1: Generation of Pomctm1/tm1
 mice that develop the characteristic 633	

melanocortin obese phenotype. 634	

A, Schematic of targeted Pomc allele for knock-in of QKQR mutation into Pomc 635	

exon 3 with resulting impact on pre-POMC processing and ACTH1-13 production. 636	

B, Amino acid sequence alignments for native and mutant ACTH1-39 molecule.  637	

C, MALDI imaging MS shows ACTH1-13 is successfully deleted from Pomctm1/tm1 638	

mouse pituitary. Mass-to-charge (m/z) signals that delineate the pars distalis (PD, m/z 639	
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835 in blue represents phospholipid) and posterior lobe (P, m/z 1086 in red represents 640	

vasopressin) are shown. In addition, diacetyl-α-MSH (m/z 1706 in green) is detected 641	

in the pars intermedia (PI) of Pomcwt/wt but not Pomctm1/tm1 tissue. Scale bars = 500 642	

µM. 643	

D and G, Body weights of mice fed a regular-chow diet from weaning. Significant 644	

difference determined using two-way repeated-measures ANOVA and Bonferroni 645	

post-hoc test between Pomcwt/wt and Pomctm1/tm1. *, p< 0.05; **, p<0.01; ***, p < 646	

0.001 or using paired Student ‘t’ test between Pomcwt/wt and Pomctm1/tm1; male #, 647	

p<0.05; female ##, p<0.01 648	

E and H, Body length measured at 27-30 weeks for mice fed a regular-chow diet 649	

from weaning. Data are shown as mean ± SEM. Significant differences determined 650	

using one-way ANOVA and Tukey’s post-hoc test. *, p< 0.05; **, p<0.01 651	

F and I, Percent body fat calculated from 6 MRI Dixon images/mouse. Data are 652	

shown as mean ± SEM for mice aged 26-29 weeks and fed a regular-chow diet. 653	

Significant differences determined using one-way ANOVA and Tukey’s post-hoc 654	

test. ***, p<0.001; ****, p<0.0001 655	

 656	

Figure 2: Food intake and energy expenditure for male and female Pomcwt/wt and 657	

Pomctm1/tm1 mice. 658	

A and B, Food intake was automatically measured in metabolic cages for mice at 4 659	

weeks of age and fed regular chow for 4 days and then switched to high-fat diet for 4 660	

days (n = 5-6 mice/group). Mice were acclimatized to the metabolic cages for 5 days 661	

prior to experiments. Data are shown as average food intake ± SEM per light cycle 662	

over 4 consecutive days for males and females. Significant differences determined 663	
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using either two-way repeated measures ANOVA and Bonferroni post-hoc analysis or 664	

unpaired two-tail Student’s t test. *, p<0.05; ***, p<0.001 665	

C and D, Oxygen consumption (VO2) measured in metabolic cages for the same mice 666	

shown in A and B. Data shown as average VO2 per light cycle ± SEM over 4 667	

consecutive days for males and females. Significant differences determined using 668	

either two-way repeated measures ANOVA and Bonferroni post-hoc analysis or 669	

unpaired two-tail Student’s t test. *, p<0.05; **, p<0.01 670	

E and F, Locomotor activity measured in metabolic cages for same mice as shown in 671	

A and B. Data are shown as total activity per light cycle ± SEM over 4 consecutive 672	

days for males and females. No significant differences were determined using either 673	

two-way repeated measures ANOVA and Bonferroni post-hoc analysis or unpaired 674	

two-tail Student’s t test. 675	

 676	

Figure 3: Central α-MSH or desacetyl-α-MSH treatments reduce male and 677	

female Pomctm1/tm1 mouse body weight. 678	

A, B, C, D, E, F Administration (i.c.v.) of α-MSH or desacetyl-α-MSH compared to 679	

vehicle treatment reduced Pomctm1/tm1 mouse body weight. At the start of treatment 680	

male mice were aged 23-31 weeks and female mice were aged 29-31 weeks. Vehicle 681	

or peptide dose (µg/25g mouse body weight on day1/day) was continuously 682	

administered over 14 days. Combined data are shown as mean ± SEM for two 683	

independent experiments. A- D; Significant differences determined using two-way 684	

repeated measures ANOVA and Dunnett’s post-hoc analysis. E, F: Significant 685	

differences determined using two-way ANOVA and Dunnett’s post-hoc analysis.  686	

*, p<0.05; **, p<0.01; ***, p<0.001. 687	

 688	
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Figure 4: Central α-MSH or desacetyl-α-MSH treatment reduces male 689	

Pomctm1/tm1 mouse fat mass. 690	

A and C, Mean body weight ± SEM for male Pomctm1/tm1 mice (n = 3 group) after 14 691	

days i.c.v administration of vehicle, α-MSH or desacetyl-α-MSH. 692	

B and D, Percent body fat ± SEM determined by MRI for male Pomctm1/tm1 mice 693	

shown in A and C after 14 days i.c.v administration of vehicle, α-MSH or desacetyl-694	

α-MSH. Significant differences between vehicle and peptide treatment determined 695	

using unpaired, two-tailed Student’s t test. *, p<0.05; **, p<0.01; ***, p<0.001 696	

E, Representative MRI images for mice presented in A, - D. Fat and lean tissues 697	

represented as green and red, respectively. 698	

  699	
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SUPPLEMENTARY	DATA	700	
	701	
	702	
MATERIALS	and	METHODS	703	
	704	
	705	
1.  Materials.  706	

Diacetyl-α-MSH, α-MSH, desacetyl-α-MSH, β-MSH and ACTH1-24 were purchased 707	

from Bachem AG (Bubendorf, Switzerland). Native ACTH1-39, QKQR mutant 708	

ACTH1-39, KGGR mutant ACTH1-39, KQRQ mutant ACTH1-39 and acetyl-QKQR 709	

mutant ACTH1-39 were purchased from Pepscan (Zuiderstuisweg 2, The Netherlands) 710	

or synthesized in-house. A rabbit polyclonal antibody (KM4) that specifically 711	

recognizes α-MSH and desacetyl-α-MSH, but not ACTH1-24, ACTH1-39, γ-MSH or β-712	

MSH, was made in-house. O-(6-Chlorobenzotriazol-1-yl)-N,N,N′,N′-713	

tetramethyluronium hexafluorophosphate (HCTU), and Fmoc-amino acids were 714	

purchased from GL Biochem (Shanghai, China). Fmoc-amino acids were supplied 715	

with the following side-chain protection: Fmoc-Asn(Trt)-OH, Fmoc-Arg(Pbf)-OH, 716	

Fmoc-Glu(OtBu)-OH, Fmoc-Gln(Trt)-OH, Fmoc-His(Trt)-OH, Fmoc-Lys(Boc)-OH, 717	

Fmoc-Ser(tBu)-OH, Fmoc-Trp(Boc)-OH, Fmoc-Tyr(tBu)-OH. Fmoc-Phe-718	

OCH2PhOCH2CH2CO2H (Fmoc-Phe-HMPP) was purchased from PolyPeptide Group 719	

(Strasbourg, France). N,N-Diisopropylethylamine (iPr2NEt), piperidine, acetic 720	

anhydride (Ac2O), N,N′-diisopropylcarbodiimide (DIC), 3,6-dioxa-1,8-octane-721	

dithiol (DODT), formic acid, 1-methyl-2-pyrrolidinone (NMP) and 722	

triisopropylsilane (iPr3SiH) were purchased from Sigma-Aldrich (St. Louis, 723	

Missouri). N,N-Dimethylformamide (DMF) and acetonitrile (MeCN) were supplied 724	

from Scharlau (Barcelona, Spain). Dichloromethane (CH2Cl2) was purchased from 725	

ECP Limited (Auckland, New Zealand). Trifluoroacetic acid (TFA) was purchased 726	
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from Halocarbon (River Edge, New Jersey). Aminomethyl polystyrene resin was 727	

synthesized following literature procedures [1, 2].   728	

 729	

2.  Synthesis, purification and analysis of “KKRR” native ACTH1-39, “QKQR” 730	

mutant ACTH1-39 and acetyl-“QKQR” mutant ACTH1-39.  731	

Aminomethyl polystyrene resin (0.1 mmol) was swollen in CH2Cl2 (5 mL, 30 min), 732	

drained and then reacted with Fmoc-Phe-HMPP (2.0 equiv), and DIC (2.0 equiv) in 733	

CH2Cl2 (2.0 mL) for 2 h at room temperature. Subsequent steps of Fmoc SPPS were 734	

performed using the Fmoc/tBu strategy and Liberty 12 Microwave Peptide 735	

Synthesizer (CEM Corporation, Mathews, NC). All amino acid couplings were 736	

performed as single coupling cycles, with the exception of Fmoc-Arg(Pbf)-OH and 737	

Fmoc-His(Trt)-OH where a double coupling cycle was performed as part of a 738	

synthetic protocol recommended by CEM Microwave Technology. Protected amino 739	

acids were incorporated using Fmoc-AA-OH (5.0 equiv, 0.2 M), HCTU (4.5 equiv, 740	

0.45 M), and iPr2NEt (10 equiv, 2 M) in DMF, for 5 min, at 25 W and maximum 741	

temperature of 75 ºC, except Fmoc-Arg(Pbf)-OH and Fmoc-His(Trt)-OH. Fmoc-742	

Arg(Pbf)-OH was initially coupled for 25 min at room temperature which was 743	

followed by the second coupling for 5 min, at 25 W and maximum temperature of 72 744	

ºC. Fmoc-His(Trt)-OH was initially coupled for 10 min at room temperature which 745	

was followed by the second coupling for 5 min, at 25 W and maximum temperature 746	

of 50 ºC The Fmoc group was removed using 20% piperidine in DMF (30 s followed 747	

by a second deprotection for 3 min at 62 W and maximum temperature of 75 ºC). For 748	

the synthesis of the acetyl-“QKQR” Mutant ACTH1-39 the final N-acetylation of the 749	

free Nα-amino group of N-terminal serine was performed using 20% Ac2O in NMP (2 750	

x). Resin cleavage and removal of the amino acid side-chain protecting groups was 751	
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undertaken by incubating the resin in TFA/iPr3SiH/H2O/DODT (v/v/v/v; 94/1/2.5/2.5) 752	

cleavage cocktail for 2 h at room temperature. The crude peptides were precipitated 753	

and triturated with cold diethyl ether, isolated (centrifugation), dissolved in 50% 754	

MeCN (aq) containing 0.1% TFA and lyophilized. 755	

Analytical reverse phase high-performance liquid chromatography (RP-HPLC) was 756	

performed using a Dionex P680 using Waters XTerraÒ analytical column (MS C18, 757	

150 mm x 4.6 mm; 5 µm), at a flow rate of 1 mL/min, and using the 5%B to 65%B 758	

over 20 min, ca. 3%B per min gradient system. The solvent system used was A (0.1% 759	

TFA in H2O) and B (0.1% TFA in MeCN) with detection at 210 nm, 254 nm, and 280 760	

nm. The ratio of products was determined by integration of spectra recorded at 210 761	

nm. 762	

A Hewlett Packard (Palo Alto, CA) 1100MSD mass spectrometer was used for ESI-763	

MS analysis in the positive mode. Peptides were purified using a Waters 600E system 764	

using Waters XTerraÒ semi-preparative column (C18, 300 mm x 19 mm; 10 µm), at a 765	

flow rate of 10 mL/min, and using the 5%B to 20%B over 15 min, ca. 1%B per min, 766	

and then 20%B to 75%B over 550 min, ca. 0.1%B per min gradient system. Fractions 767	

were collected, analyzed by either RP-HPLC or ESI-MS, pooled and lyophilized, to 768	

give the “KKRR” Native ACTH1-39 (11.8 mg, 98% purity); Rt 13.30 min; m/z (ESI-769	

MS) 917.1 ([M + 5H]5+ requires 917.4), “QKQR” Mutant ACTH1-39 (6.0 mg, 99% 770	

purity); Rt 13.41 min; m/z (ESI-MS) 911.5 ([M + 5H]5+ requires 911.8), and acetyl-771	

“QKQR” Mutant ACTH1-39 (19.2 mg, 98% purity); Rt 13.70 min; m/z (ESI-MS) 920.0 772	

([M + 5H]5+ requires 920.8), as white amorphous solids. 773	

 774	

3.  Testing mutations in ACTH1-39 for effects on ACTH1-39 functional activity. 775	

3.1. In Vivo: Dexamethasone-suppression test.  776	
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Adult male Pomcwt/wt mice were acclimatized to handing for 1 week before the start of 777	

the experiment. At 0900 hour on the day of experiment each mouse received 0.4 mg 778	

(100 µL) dexamethasone sodium phosphate by intraperitoneal (ip) injection. After 2 779	

h, the mice received via subcutaneous injection 100 µL vehicle (0.5% bovine serum 780	

albumin [BSA] in phosphate buffered saline [PBS]), ACTH1-39 (1 µg) or mutant 781	

ACTH1-39 peptide (1 µg). One hour later, the mice were euthanized by cervical 782	

dislocation, blood collected by cardiac puncture and plasma prepared for steroid 783	

hormone measurement.  784	

3.2. In Vitro: Cre-luciferase activity.  785	

HEK293 cells were transfected with human MC4R, cAMP responsive luciferase 786	

construct (LUC) and internal control plasmid, pRL-CMV (Promega Corp., Madison, 787	

Wisconsin, USA) which constitutively expresses Renilla luciferase. After 788	

transfection, cells were serum starved for 8 h before increasing doses of peptide were 789	

added and the cells incubated for 16 h at 37°C. The cells were then lysed and 790	

luciferase reporter activity analyzed as previously described [3]. 791	

 792	

4.   MALDI-TOF MS to identify POMC-derived peptides expressed in pituitary 793	

cryosections and pituitary lysates. 794	

Sections (10 µM) of snap-frozen Pomcwt/wt and Pomctm1/tm1 adult mouse pituitaries 795	

were sectioned at -21°C on a cryostat and mounted onto either a glass slide for H&E 796	

staining or a MALDI-TOF plate ready for Mass Spectrometry (MS). The adjacent 797	

sections on the glass slide were used to determine which sections on the MALDI-TOF 798	

plate included the pars intermedia of the pituitary. Spots (1 µL) of 10 µM purified 799	

peptide stocks (diacetyl-α-MSH, α-MSH, desacetyl-α-MSH and ACTH1-24) were also 800	

spiked on the MALDI-TOF plate to get near-point calibration data for molecular 801	
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weight determination. The MALDI-TOF plates with sections and peptides were dried 802	

for ≥30 min in a vacuum dessicator. Matrix (αCyano-4-hydroxycinnamic acid in 50% 803	

acetonitrile in sterile water with 0.1% trifluoroacetic acid [TFA]) was applied 804	

manually over tissues and peptides and allowed to thoroughly dry before the plate was 805	

read in a Voyager DE-Pro Mass Spectrometer (Applied Biosystems, Carlsbad, CA).  806	

For tissue lysates, each pituitary was lysed in 100 µL lysis buffer (1 cOmplete™, 807	

Mini Protease Inhibitor Cocktail tablet (Roche Life Science, Auckland, New Zealand) 808	

dissolved in 10 mL sterile water, 0.1% TFA) on ice using a plastic rod to disrupt 809	

tissue followed by sonication in a water bath at 4°C for 2 min. The lysate was then 810	

centrifuged at 13,000 rpm at 4C for 2 min. An aliquot (1 µL) of supernatant was 811	

mixed with 1 µL of matrix, spotted onto a MALDI-TOF plate, thoroughly dried and 812	

then read in a Voyager DE-Pro Mass Spectrometer.  813	

 814	

5.   Immunoprecipitation and MS to identify the peptide recognized by KM4 815	

antibody in Pomctm1/tm1 mouse pituitary. 816	

KM4 antibody cross-linked to Protein A Sepharose 4 Fast Flow Affinity beads 817	

(Roche Diagnostics) was used to pull-down peptides in pituitary lysates. The bound 818	

peptides were identified using MALDI-TOF and LC-ESI Mass spectrometry after 819	

elution from the beads. The beads were prepared for cross-linking by centrifuging 400 820	

µL Protein A Sepharose 4 bead slurry in an eppendorf tube at 6000rpm for 2 min and 821	

removing the ethanol supernatant. The beads were then washed 3 x with 1 mL binding 822	

buffer (0.1% BSA in PBS, pH 7.4) by gentle rotation of tubes at room temperature 823	

(RT) for 10 min followed by centrifugation and aspiration of supernatant. KM4 824	

antibody (400 µL serum) was bound to the sepharose beads in the presence of 400 µL 825	

binding buffer by mixing with rotation overnight at 4°C in the presence of 826	
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cOmplete™, Mini Protease Inhibitor Cocktail. The beads were then pelleted by 827	

centrifugation, the supernatant discarded and the beads were washed once with 400 828	

µL binding buffer followed by 3 washes of 400 µL PBS. The bifunctional coupling 829	

reagent, dimethyl pimelindiimidate (DMP) (Sigma-Aldrich New Zealand Ltd, 830	

Auckland, NZ) (400 µL), pH 8-9, was added to the beads and they were mixed by 831	

rotation for 30 min at RT. Following centrifugation and aspiration of DMP, the beads 832	

were washed with 400 µL wash buffer (0.2 M Triethanolamine [Sigma-Aldrich New 833	

Zealand Ltd] in PBS) by gentle mixing with rotation for 5 min at RT. The addition of 834	

fresh DMP followed by these wash steps was repeated two more times. Quenching 835	

buffer (50 mM ethanolamine hydrochloride [Sigma-Aldrich New Zealand Ltd] in 836	

PBS, 400 µL) was added to beads followed by gentle mixing by rotation for 5 in at 837	

RT, centrifugation and aspiration of supernatant. To remove excess unlabeled 838	

antibody, the beads were washed with 0.1 M glycine, pH 3.0. The beads were washed 839	

1x with PBS for 5 min at RT, 3x with PBS + 0.01% sodium azide, 0.1% BSA and 840	

then stored in the final wash at 4°C.  841	

Immunoprecipitation using the KM4 cross-linked beads was validated using pure 842	

synthetic α-MSH and desacetyl-α-MSH peptides. Sepharose-KM4 cross-linked beads 843	

(20 µL slurry) were transferred from the stock into two eppendorf tubes, centrifuged 844	

and washed 3x with PBS as previously described. Purified α-MSH (10 µM, 10 µL) or 845	

desacetyl-α-MSH (10 µM, 10 µL) was bound to Sepharose-KM4 beads in the 846	

presence of 200 µL PBS for 45 min at RT with gentle mixing. Following 847	

centrifugation and aspiration of supernatant, the beads were washed 10x with 200 µL 848	

wash buffer (50 mM ammonium bicarbonate, pH 8.2) and the final wash was pipetted 849	

into a P10 filter tip which when run dry, left the Sepharose-KM4 bead complexed 850	

with peptide in the filter. The filter was then washed 10x with 200 µL sterile water 851	
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before the peptides were eluted into a low-bind eppendorf tube with 10 µL elution 852	

buffer (0.1% TFA in acetonitrile). 1 µL of each eluted peptide was spotted onto a 853	

MALDI-TOF plate and left to dry in a fume hood overnight. Spots (10 µL) of 2.5 fold 854	

dilutions of the 10uM purified peptide stock were included on the plate as positive 855	

controls. The following day the spots were analyzed on a Voyager Pro MALDI-TOF 856	

Mass Spectrometer as previously described. 857	

Each snap-frozen Pomctm1/tm1 mouse pituitary was lysed in 300 µL lysis buffer (50 858	

mM Tris-HCL, 150 mM NaCL, pH 8.0) containing 0.1% Brij 35 (Sigma-Aldrich New 859	

Zealand Ltd) + 1 cOmplete™ Mini Protease Inhibitor Cocktail tablet per 10 mL at 860	

4°C using a small plastic homogenizing rod followed by 2 min water bath sonication 861	

at 4°C. The homogenate was centrifuged at 13,000 rpm for 2 min at 4°C and the 862	

supernatant collected. The supernatant was then incubated with 10 µL Sepharose-863	

KM4 beads at RT for 45 min with gentle mixing. Following centrifugation and 864	

aspiration of supernatant the beads were washed as described above for peptide 865	

binding and then eluted with 20 µL matrix ready for spotting on MALDI-TOF plate 866	

as previously described. 867	

To identify the peptide in Pomctm1/tm1 pituitary that immunoprecipitates with KM4, 868	

three Pomctm1/tm1 pituitaries were immunoprecipitated using KM4 antibody and 1 µL 869	

of each eluate was analyzed by MALDI-TOF to confirm the presence of a peak at m/z 870	

4598. The peptide eluates were pooled, diluted 10x in 0.1% formic acid in water and 871	

then loaded onto an Oasis Mixed mode Cation Exchange (MCX) SPE cartridge 872	

(Waters, Milford, MA, USA). The loaded MCX cartridge was washed 1x with 1 mL 873	

0.1N HCL followed by 1x with 1 mL methanol and then the peptides were eluted with 874	

1 mL 5% ammonium hydroxide in methanol. The eluant was concentrated to ~10-20 875	

µL using centrifugation under vacuum, and then digested with 25 ng/mL sequencing-876	
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grade trypsin (Promega, Madison, WI, USA). The resulting digest was separated on a 877	

0.3 x 100 mm Zorbax 300SB-C18 column (Agilent, Santa Clara, CA, USA). The 878	

HPLC gradient between Buffer A (0.1% formic acid in water) and Buffer B (0.1% 879	

formic acid in acetonitrile) was formed at 6 µL/min as follows: 10% B for the first 3 880	

min, increasing to 35% B by 33 min, increasing to 95% B by 36 min, held at 95% 881	

until 39 min, back to 10% B at 40.5 min and held there until 48 min. The LC effluent 882	

was directed into the Ionspray source of QSTAR XL hybrid Quadrupole-Time-of-883	

Flight MS (Applied Biosystems, Foster City, CA, USA) scanning from 300-1600 m/z. 884	

the top three most abundant multiply-charged peptides were selected for MS/MS 885	

analysis (100-1600 m/z). The MS and HPLC system were under the control of the 886	

Analyst QS 2.0 software package (Applied Biosystems). The resulting MS/MS 887	

spectra were searched against the Mouse subset of NCBI’s protein database (146781 888	

sequences, June 2012) using Mascot software (Matrix Science, London, UK). 889	

 890	

6.   Testing acetyl-QKQR mutant ACTH1-39 peptides for coupling of MC2R and 891	

MC4R to adenylyl cyclase in vitro. 892	

HEK293 cells stably expressing mouse MC4R (mMC4R) developed previously [4, 5] 893	

were used to compare acetyl-QKQR mutant ACTH1-39 with ACTH1-24, ACTH1-39 and 894	

QKQR mutant ACTH1-39 to determine whether acetylation of QKQR mutant ACTH1-895	

39 alters QKQR mutant ACTH1-39 activation of the MC4R. 896	

HEK293 cells stably expressing mMRAP developed previously [6] and transiently 897	

transfected with mMC2R were used to compare acetyl-QKQR ACTH1-39 with 898	

ACTH1-24, ACTH1-39 and QKQR mutant ACTH1-39 to determine whether acetylation 899	

of QKQR mutant ACTH1-39 alters mutant QKQR ACTH1-39 activation of the MC2R. 900	

The mMC2R was obtained by PCR from C57BL/6J mouse retroperitoneal fat cDNA 901	
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and subcloned into pcDNA3.1 vector (InVitrogen New Zealand Ltd., Auckland, NZ). 902	

PCR for mMC2R was performed on 2 µL cDNA using iProof High Fidelity DNA 903	

polymerase (BioRad Laboratories Pty, Auckland, NZ) using forward (5’-904	

atcggatccGTAAGTCAACGGCAAACACCACC-3’) and reverse (5’-905	

gactcgagCTAATACCGGTTGCAGAAGAGCA-3’) and the following conditions: 906	

denature at 98°C for 1 min followed by 34 cycles of denature at 98°C, anneal at 907	

62.5°C for 5 s and elongate at 72°C for 10 s, and a final 7 min extension at 72°C. The 908	

primers encoded restriction enzyme sites for BamH1 and Xho1 for directional 909	

cloning. The recombinant DNA was verified by sequencing and the mMC2R coding 910	

sequence aligned with GenBank accession number XM 006525713.1. Adenylyl 911	

cyclase activity was determined directly by measuring the ability of cells to convert 912	

[3H]adenine to [3H]cAMP following exposure of the cells to increasing doses of 913	

peptide as described previously [5]. 914	

 915	

7.  MALDI-TOF Imaging MS. 916	

Pomcwt/wt and Pomctm1/tm1 pituitaries from adult mice were dissected, snap frozen and 917	

stored at -80°C. Pituitary glands were mounted on a cryostat specimen holder with a 918	

small amount of Tissue-Tek OCT Compound (Siemens NZ Ltd.) at the base of the 919	

tissue only. Transverse sections (12 µm) were cut and collected alternately via thaw-920	

mounting on glass slides (for histological staining) or stainless steel MALDI plate (for 921	

MALDI image analysis). For histological analysis, sections on glass slides were H&E 922	

stained using standard procedures. Sections for MALDI imaging analysis were placed 923	

in a vacuum desiccator for 30 min prior to undergoing matrix application. A thin even 924	

coating of 2,5-dihydroxybenzoic acid (DHB) matrix was applied to pituitary sections 925	

using vacuum sublimation. Briefly, the MALDI plate was placed in an in-house 926	
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fabricated glass sublimation apparatus and a vacuum of 4.0 x 10-2 Torr established. 927	

Heat (~ 120°C) was applied to the chamber via a sand bath for 6 min to achieve an 928	

optimal DHB matrix coating. Following matrix application, matrix was recrystalized 929	

using a simple humidity chamber. The MALDI plate was attached to the lid of a glass 930	

petri dish and the chamber was closed and humidified with a piece of filter paper 931	

saturated with 1 mL of 83.7% acetonitrile and 5% trifluoroacetic acid for 4 min at 932	

room temperature. The chamber was then opened and the pituitary sample dried at 933	

room temperature. 934	

MALDI imaging was performed using a Voyager DE-Pro MALDI-TOF MS 935	

operating in linear positive mode with an accelerating potential of +25 kV. An 936	

external calibration was applied to the instrument prior to analysis. MALDI imaging 937	

data sets were collected over whole mouse pituitary gland sections (MMSIT, 938	

Novartis, Basel Switzerland) with a raster step size of 60 µm and 25 laser shots per 939	

spectrum. Each data set consisted of ~1000 individual sampling locations, each 940	

representing one pixel in the resultant image. Data were normalized to total ion 941	

current and molecular images reconstituted using BioMap software (Novartis, Basel, 942	

Switzerland). Each m/z signal was plotted ± 0.05% of the molecular mass. For display 943	

purposes, the data were interpolated and pixel intensities were normalized to the 944	

maximum intensity for each m/z displayed in the software to use the entire dynamic 945	

range. Assignments of peptide identifications were made using tandem MS (data not 946	

shown). 947	

  948	

8.   Plasma corticosterone assay. 949	

Blood was collected from cardiac puncture on isoflurane-anesthetized mice or mice 950	

euthanized by cervical dislocation for the dexamethasone suppression tests. Plasma 951	
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corticosterone was either measured using a commercial kit (Immunodiagnostics, Tyne 952	

and Wear, UK) according to the manufacturer’s instructions or using triple 953	

quadrupole MS. For triple quadrupole MS, 100 µL of internal standard solution (6 ng 954	

mL-1 corticosterone-d8 in water) was added to 85 µL plasma. Steroids were extracted 955	

using 1 mL of ethyl acetate (Merck, KGaA Darnstadt, Germany). After removal of 956	

the organic supernatant, samples were dried by vacuum concentration (Savant 957	

SC250EXP, Thermo Scientific, Asheville, NC, USA), resuspended in 60 µL of 958	

mobile phase (65% methanol (Merck) and 35% water), and transferred to HPLC 959	

injector vials. 12 µL was injected onto an HPLC MS system consisting of an Accela 960	

MS pump and autosampler followed by an Ion Max APCI source on a Finnigan TSQ 961	

Quantum Ultra AM triple quadrapole MS, all controlled by Finnigan Xcalibur 962	

software (Thermo Electron Corporation, San Jose, CA, USA). The mobile phase was 963	

a gradient of methanol and water, flowing at 300 µL.min-1 through a Luna HST 964	

2.6µm C18(2) 100 x 3.0mm column at 40ºC (Phenomenex, Auckland, New Zealand). 965	

Retention times were 4.3min for both corticosterone and corticosterone-d8. Ionisation 966	

was in positive mode for corticosterone and Q2 had 1.2 mTorr of argon. The mass 967	

transitions followed were corticosterone 347.15 → 121.1 at 27 V and corticosterone-968	

d8 355.2 → 125.2 at 24 V.  All samples were analysed in one assay.  969	

 970	
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SUPPLEMENTARY FIGURES 995	

Supplementary Figure 1. 996	

Validation that QKQR mutant ACTH functions similar to native ACTH1-39. (A) 997	

ACTH-stimulated plasma corticosterone in dexamethasone-suppressed adult male 998	

mice. Two-hours post dexamethasone treatment mice (n=4 /group) were treated with 999	

vehicle (Sham), native ACTH1-39 (KKRR) or mutant (QKQR, KGGR, KQRQ) 1000	
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ACTH1-39 peptide. Data is shown as mean ± SEM ****, p < 0.0001. (B) Native 1001	

ACTH1-39, mutant (QKQR) ACTH1-39 and α-MSH stimulated human MC4R co-1002	

transfected with Cre-luciferase reporter into HEK293 cells. Data is shown as mean ± 1003	

SEM for 2-3 independent experiments. (C) Plasma corticosterone levels for male 1004	

(168-216 days) and female (170-208 days) mice. Data are shown as mean ± SEM. 1005	

	1006	

Supplementary Figure 2. 1007	

MALDI-TOF MS detects diacetyl-α-MSH and α-MSH in Pomcwt/wt but not in 1008	

Pomctm1/tm1 whole pituitary lysates. Mass spectra are shown for representative 1009	

Pomcwt/wt (A) and Pomctm1/tm1 (B) whole pituitary lysates. α-MSH (m/z 1664), 1010	

diacetyl-α-MSH (m/z 1707) and Arg-CLIP (1-21) (m/z 2359) are detected in 1011	

Pomcwt/wt but not in Pomctm1/tm1 pituitary lysates. Vasopressin (m/z 1085), J peptide 1012	

(m/z 1941) and a peptide that may be β-lipotropin (m/z 4438; 9Da larger than β-1013	

lipotropin), are detected in both Pomcwt/wt and Pomctm1/tm1 pituitary lysates. Relatively 1014	

weak signal is observed at m/z 4638 for Pomctm1/tm1 but not Pomcwt/wt pituitary 1015	

lysates. 1016	

	1017	

Supplementary Figure 3. 1018	

N-terminal acetylation does not alter QKQR mutant ACTH1-39 at the mMC4R 1019	

but it abolishes its activity at the mMC2R. (A) Acetyl-QKQR ACTH1-39 and 1020	

QKQR ACTH1-39 function identically coupling the mMC4R transfected into HEK293 1021	

cells to adenylyl cyclase. Both QKQR mutant ACTH1-39 (EC50 = 4.95 ± 0.05 x 10-9M) 1022	

and acetyl-QKQR mutant ACTH1-39 (EC50 = 4.74 ± 0.05 x 10-9M) are two-fold less 1023	

potent compared with native ACTH1-39 (EC50 = 2.23 ± 0.06 x 10-9M). (B) QKQR 1024	
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ACTH1-39 is a full agonist coupling the mMC2R transfected into HEK293 cells to 1025	

adenylyl cyclase but it is 82 fold less potent compared with ACTH1-39. In contrast, 1026	

Acetyl-QKQR ACTH 1-39 is inactive coupling the mMC2R to adenylyl cyclase. Data 1027	

is shown as mean ± SEM for three independent experiments.  1028	

 1029	

Supplementary Figure 4. 1030	

α-MSH and desacetyl-α-MSH are stable dissolved in PBS when stored at 37 °C 1031	

for 14 days. MALDI-TOF MS detects (A, C, E) intact α-MSH and (B, D, F) intact 1032	

desacetyl-α-MSH following (A, B) 7, (C, D) 10 and (E, F) 14 days storage in PBS and 1033	

incubation at 37 °C. There is no detectable degradation or oxidation of either peptide 1034	

after 14 days storage. The small peaks observed on MS are likely due to the PBS used 1035	

to dissolve the peptides. 1036	

 1037	

 1038	
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