49 research outputs found

    Delivery of an anti-HIV-1 ribozyme into HIV-infected cells via cationic liposomes

    Get PDF
    Cationic liposome-mediated intracellular delivery of a fluorescein-labeled chimeric DNA-RNA ribozyme targeted to the HIV-1 5\u27 LTR was investigated, using THP-1, THP-1/HIV-1(IIIB) or HeLa/LAV cells. Different fluorescence patterns were observed when the cells were exposed to Lipofectamine, Lipofectin or DMRIE:DOPE (1:1) complexed to the ribozyme. With Lipofectamine intense cell-associated fluorescence was found. Incubation with Lipofectin resulted in less intense diffuse fluorescence, while with DMRIE an intense but sporadic fluorescence was observed. Differentiated THP-1/HIV-1(IIIB) cells were more susceptible to killing by liposome-ribozyme complexes than THP-1 cells. Under non-cytotoxic conditions (a 4-h treatment) complexes of 5, 10 or 15 μM Lipofectin or DOTAP:DOPE (1:1) and ribozyme, at lipid:ribozyme ratios of 8:1 or 4:1, did not affect p24 production in THP-1/HIV-1(IIIB) cells in spite of the intracellular accumulation of the ribozyme. A 24-h exposure of THP-1/HIV-1(IIIB) cells to 5 μM Lipofectin or DOTAP:DOPE (1:1) complexed with either the functional or a modified control ribozyme reduced virus production by approximately 30%. Thus, the antiviral effect of the liposome-complexed ribozyme was not sequence-specific. In contrast, the free ribozyme at a relatively high concentration inhibited virus production by 30%, while the control ribozyme was ineffective, indicating a sequence-specific effect. Both Lipofectin and DOTAP complexed with ribozyme were toxic at 10 and 15 μM after a 24-h treatment. A 4-h treatment of HeLa/LAV cells with Lipofectin at 5, 10 or 15 μM was not toxic to the cells, but also did not inhibit p24 production. In contrast, treatment of HeLa CD4+ cells immediately after infection with HIV-1(IIIB) at the same lipid concentrations and lipid:ribozyme ratios was cytotoxic. Our results indicate that the delivery of functional ribozyme into cells by cationic liposomes is an inefficient process and needs extensive improvement before it can be used in ex vivo and in vivo applications. Copyright (C) 1998 Elsevier Science B.V

    Myeloid cell-targeted miR-146a mimic alleviates NF-κB-driven cytokine storm without interfering with CD19-specific CAR T cell activity against B cell lymphoma

    Get PDF
    Background: NF-κB is a key regulator of inflammation, myeloproliferation and cancer progression, with an important role in leukemogenesis. Despite therapeutic potential, targeting NF-κB proved challenging. However, in non-malignant myeloid cells NF-κB activity is tightly regulated through many molecular mechanisms, including miRNA. Methods: Here, we describe an original approach to NF-κB inhibition using miR146a, which targets upstream regulators of NF-κB signaling. We generated a myeloid cell-targeted NF-κB inhibitor by tethering a chemically-modified miR146a mimic oligonucleotide to a scavenger receptor (SR)/Toll-like receptor 9 (TLR9) ligand (C-miR146a). Results: Unlike an unconjugated miR-146a molecule, C-miR146a was rapidly internalized and delivered to cytoplasm of target myeloid cells such as macrophages or myeloid leukemia cells. C-miR146a reduced protein levels of classic miR-146a targets, IRAK1 and TRAF6, thereby efficiently blocking NF-κB activation in target cells. Intravenous injections of C-miR146a mimic to miR-146-deficient mice prevented excessive NF-κB activation in myeloid cells, thereby alleviating myeloproliferation and exaggerated inflammatory responses to bacterial challenge. The NF-κB-driven release of IL-1 and IL-6 from monocytes is known to be responsible for cytokine release syndrome (CRS), which can occur in response to bacterial infections, antibody-based therapies and relatively frequently as a serious adverse effect of chimeric antigen receptor (CAR) T-cell therapies. While low expression of miR146a has not yet been implicated in CRS, C-miR146a treatments did reduce pro-inflammatory activity of human monocytes, at the level of IL-1 and IL-6 production, induced by the CD19-specific but not by the naive CAR T cells in vitro. Repeated systemic administration of C-miR146a oligonucleotide alleviated human monocyte-dependent CRS in xenotransplanted B-cell lymphoma model without impeding the on-target therapeutic effects of CAR T-cells against lymphoma cells. Conclusions: Our results demonstrate potential of using myeloid cell-targeted miR146a mimics for treatment of inflammatory diseases and prevention of potential side effects of immunotherapies. The SR/TLR9-targeted miR-146a mimic design provides an outline for the development of miRNA therapeutics for a variety of myeloid cell-related diseases

    Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells

    Get PDF
    The envelope glycoprotein of human immunodeficiency virus (HIV) consists of an exterior glycoprotein (gp120) and a trans-membrane domain (gp41) and has an important role in viral entry into cells. HIV-1 entry has been validated as a clinically relevant anti-viral strategy for drug discovery. In the present work, several 2′-F substituted RNA aptamers that bind to the HIV-1BaL gp120 protein with nanomole affinity were isolated from a RNA library by the SELEX (Systematic Evolution of Ligands by EXponential enrichment) procedure. From two of these aptamers we created a series of new dual inhibitory function anti-gp120 aptamer–siRNA chimeras. The aptamers and aptamer–siRNA chimeras specifically bind to and are internalized into cells expressing HIV gp160. The Dicer-substrate siRNA delivered by the aptamers is functionally processed by Dicer, resulting in specific inhibition of HIV-1 replication and infectivity in cultured CEM T-cells and primary blood mononuclear cells (PBMCs). Moreover, we have introduced a ‘sticky’ sequence onto a chemically synthesized aptamer which facilitates attachment of the Dicer substrate siRNAs for potential multiplexing. Our results provide a set of novel inhibitory agents for blocking HIV replication and further validate the use of aptamers for delivery of Dicer substrate siRNAs

    Bone marrow niche trafficking of miR-126 controls the self-renewal of leukemia stem cells in chronic myelogenous leukemia

    Get PDF
    Leukemia stem cells (LSCs) in individuals with chronic myelogenous leukemia (CML) (hereafter referred to as CML LSCs) are responsible for initiating and maintaining clonal hematopoiesis. These cells persist in the bone marrow (BM) despite effective inhibition of BCR–ABL kinase activity by tyrosine kinase inhibitors (TKIs). Here we show that although the microRNA (miRNA) miR-126 supported the quiescence, self-renewal and engraftment capacity of CML LSCs, miR-126 levels were lower in CML LSCs than in long-term hematopoietic stem cells (LT-HSCs) from healthy individuals. Downregulation of miR-126 levels in CML LSCs was due to phosphorylation of Sprouty-related EVH1-domain-containing 1 (SPRED1) by BCR–ABL, which led to inhibition of the RAN–exportin-5–RCC1 complex that mediates miRNA maturation. Endothelial cells (ECs) in the BM supply miR-126 to CML LSCs to support quiescence and leukemia growth, as shown using mouse models of CML in which Mir126a (encoding miR-126) was conditionally knocked out in ECs and/or LSCs. Inhibition of BCR–ABL by TKI treatment caused an undesired increase in endogenous miR-126 levels, which enhanced LSC quiescence and persistence. Mir126a knockout in LSCs and/or ECs, or treatment with a miR-126 inhibitor that targets miR-126 expression in both LSCs and ECs, enhanced the in vivo anti-leukemic effects of TKI treatment and strongly diminished LSC leukemia-initiating capacity, providing a new strategy for the elimination of LSCs in individuals with CML

    Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis

    Full text link
    Reprogrammed glucose metabolism as a result of increased glycolysis and glucose uptake is a hallmark of cancer. Here we show that cancer cells can suppress glucose uptake by non-tumour cells in the pre-metastatic niche, by secreting vesicles that carry high levels of the miR-122 microRNA. High miR-122 levels in the circulation have been associated with metastasis in breast cancer patients and we show that cancer-cell-secreted miR-122 facilitates metastasis by increasing nutrient availability in the pre-metastatic niche. Mechanistically cancer-cell-derived miR-122 suppresses glucose uptake by niche cells in vitro and in vivo by downregulating the glycolytic enzyme pyruvate kinase (PKM). In vivo inhibition of miR-122 restores glucose uptake in distant organs, including brain and lungs, and decreases the incidence of metastasis. These results demonstrate that by modifying glucose utilization by recipient pre-metastatic niche cells, cancer-derived extracellular miR-122 is able to reprogram systemic energy metabolism to facilitate disease progression

    Organizational learning in a centrally planned economy

    Get PDF
    Arts, Education & Law Group, School of Criminology and Criminal JusticeNo Full Tex

    Development of Cell-type specific anti-HIV gp120 aptamers for siRNA delivery

    No full text
    The global epidemic of infection by HIV has created an urgent need for new classes of antiretroviral agents. The potent ability of small interfering (si)RNAs to inhibit the expression of complementary RNA transcripts is being exploited as a new class of therapeutics for a variety of diseases including HIV. Many previous reports have shown that novel RNAi-based anti-HIV/AIDS therapeutic strategies have considerable promise; however, a key obstacle to the successful therapeutic application and clinical translation of siRNAs is efficient delivery. Particularly, considering the safety and efficacy of RNAi-based therapeutics, it is highly desirable to develop a targeted intracellular siRNA delivery approach to specific cell populations or tissues. The HIV-1 gp120 protein, a glycoprotein envelope on the surface of HIV-1, plays an important role in viral entry into CD4 cells. The interaction of gp120 and CD4 that triggers HIV-1 entry and initiates cell fusion has been validated as a clinically relevant anti-viral strategy for drug discovery
    corecore