50 research outputs found

    COVID-19 and emerging viral infections: The case for interferon lambda

    Get PDF
    With the first reports on coronavirus disease 2019 (COVID-19), which is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the scientific community working in the field of type III IFNs (IFN-Ξ») realized that this class of IFNs could play an important role in this and other emerging viral infections. In this Viewpoint, we present our opinion on the benefits and potential limitations of using IFN-Ξ» to prevent, limit, and treat these dangerous viral infections

    Mouse Dfa Is a Repressor of TATA-box Promoters and Interacts with the Abt1 Activator of Basal Transcription

    Get PDF
    Our study of the mouse Ate1 arginyltransferase, a component of the N-end rule pathway, has shown that Ate1 pre-mRNA is produced from a bidirectional promoter that also expresses, in the opposite direction, a previously uncharacterized gene (Hu, R. G., Brower, C. S., Wang, H., Davydov, I. V., Sheng, J., Zhou, J., Kwon, Y. T., and Varshavsky, A. (2006) J. Biol. Chem. 281, 32559–32573). In this work, we began analyzing this gene, termed Dfa (divergent from Ate1). Mouse Dfa was found to be transcribed from both the bidirectional P_(Ate1/Dfa) promoter and other nearby promoters. The resulting transcripts are alternatively spliced, yielding a complex set of Dfa mRNAs that are present largely, although not exclusively, in the testis. A specific Dfa mRNA encodes, via its 3β€²-terminal exon, a 217-residue protein termed Dfa^A. Other Dfa mRNAs also contain this exon. DfaA is sequelogous (similar in sequence) to a region of the human/mouse HTEX4 protein, whose physiological function is unknown. We produced an affinity-purified antibody to recombinant mouse DfaA that detected a 35-kDa protein in the mouse testis and in several cell lines. Experiments in which RNA interference was used to down-regulate Dfa indicated that the 35-kDa protein was indeed Dfa^A. Furthermore, Dfa^A was present in the interchromatin granule clusters and was also found to bind to the Ggnbp1 gametogenetin-binding protein-1 and to the Abt1 activator of basal transcription that interacts with the TATA-binding protein. Given these results, RNA interference was used to probe the influence of Dfa levels in luciferase reporter assays. We found that Dfa^A acts as a repressor of TATA-box transcriptional promoters

    Expansion of voltage-dependent Na+ channel gene family in early tetrapods coincided with the emergence of terrestriality and increased brain complexity

    Get PDF
    Author Posting. Β© The Authors, 2010. This is the author's version of the work. It is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Molecular Biology and Evolution 28 (2011): 1415-1424, doi:10.1093/molbev/msq325.Mammals have 10 voltage-dependent sodium (Nav) channel genes. Nav channels are expressed in different cell types with different sub-cellular distributions and are critical for many aspects of neuronal processing. The last common ancestor of teleosts and tetrapods had four Nav channel genes presumably on four different chromosomes. In the lineage leading to mammals a series of tandem duplications on two of these chromosomes more than doubled the number of Nav channel genes. It is unknown when these duplications occurred, whether they occurred against a backdrop of duplication of flanking genes on their chromosomes, or as an expansion of ion channel genes in general. We estimated key dates of the Nav channel gene family expansion by phylogenetic analysis using teleost, elasmobranch, lungfish, amphibian, avian, lizard, and mammalian Nav channel sequences, as well as chromosomal synteny for tetrapod genes. We tested, and exclude, the null hypothesis that Nav channel genes reside in regions of chromosomes prone to duplication by demonstrating the lack of duplication or duplicate retention of surrounding genes. We also find no comparable expansion in other voltage dependent ion channel gene families of tetrapods following the teleost-tetrapod divergence. We posit a specific expansion of the Nav channel gene family in the Devonian and Carboniferous periods when tetrapods evolved, diversified, and invaded the terrestrial habitat. During this time the amniote forebrain evolved greater anatomical complexity and novel tactile sensory receptors appeared. The duplication of Nav channel genes allowed for greater regional specialization in Nav channel expression, variation in sub-cellular localization, and enhanced processing of somatosensory input.This work was funded by the National Science Foundation (IBN 0236147 to H.H.Z and M.C.J), and the National Institutes of Health (R01GM084879 to H.H.Z)

    Is plant mitochondrial RNA editing a source of phylogenetic incongruence? An answer from in silico and in vivo data sets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In plant mitochondria, the post-transcriptional RNA editing process converts C to U at a number of specific sites of the mRNA sequence and usually restores phylogenetically conserved codons and the encoded amino acid residues. Sites undergoing RNA editing evolve at a higher rate than sites not modified by the process. As a result, editing sites strongly affect the evolution of plant mitochondrial genomes, representing an important source of sequence variability and potentially informative characters.</p> <p>To date no clear and convincing evidence has established whether or not editing sites really affect the topology of reconstructed phylogenetic trees. For this reason, we investigated here the effect of RNA editing on the tree building process of twenty different plant mitochondrial gene sequences and by means of computer simulations.</p> <p>Results</p> <p>Based on our simulation study we suggest that the editing β€˜noise’ in tree topology inference is mainly manifested at the cDNA level. In particular, editing sites tend to confuse tree topologies when artificial genomic and cDNA sequences are generated shorter than 500 bp and with an editing percentage higher than 5.0%. Similar results have been also obtained with genuine plant mitochondrial genes. In this latter instance, indeed, the topology incongruence increases when the editing percentage goes up from about 3.0 to 14.0%. However, when the average gene length is higher than 1,000 bp (<it>rps3</it>, <it>matR</it> and <it>atp1</it>) no differences in the comparison between inferred genomic and cDNA topologies could be detected.</p> <p>Conclusions</p> <p>Our findings by the here reported <it>in silico</it> and <it>in vivo</it> computer simulation system seem to strongly suggest that editing sites contribute in the generation of misleading phylogenetic trees if the analyzed mitochondrial gene sequence is highly edited (higher than 3.0%) and reduced in length (shorter than 500 bp).</p> <p>In the current lack of direct experimental evidence the results presented here encourage, thus, the use of genomic mitochondrial rather than cDNA sequences for reconstructing phylogenetic events in land plants.</p

    Analysis of Gene Order Conservation in Eukaryotes Identifies Transcriptionally and Functionally Linked Genes

    Get PDF
    The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional control

    Compound Evolutionary History of the Rhesus Macaque Mhc Class I B Region Revealed by Microsatellite Analysis and Localization of Retroviral Sequences

    Get PDF
    In humans, the single polymorphic B locus of the major histocompatibility complex is linked to the microsatellite MIB. In rhesus macaques, however, haplotypes are characterized by the presence of unique combinations of multiple B genes, which may display different levels of polymorphism. The aim of the study was to shed light on the evolutionary history of this highly complex region. First, the robustness of the microsatellite MIB-linked to almost half of the B genes in rhesus macaques (Mamu-B)–for accurate B haplotyping was studied. Based on the physical map of an established haplotype comprising 7 MIB loci, each located next to a certain Mamu-B gene, two MIB loci, MIB1 and MIB6, were investigated in a panel of MHC homozygous monkeys. MIB1 revealed a complex genotyping pattern, whereas MIB6 analysis resulted in the detection of one or no amplicon. Both patterns are specific for a given B haplotype, show Mendelian segregation, and even allow a more precise haplotype definition than do traditional typing methods. Second, a search was performed for retroelements that may have played a role in duplication processes as observed in the macaque B region. This resulted in the description of two types of duplicons. One basic unit comprises an expressed Mamu-B gene, adjacent to an HERV16 copy closely linked to MIB. The second type of duplicon comprises a Mamu-B (pseudo)gene, linked to a truncated HERV16 structure lacking its MIB segment. Such truncation seems to coincide with the loss of B gene transcription. Subsequent to the duplication processes, recombination between MIB and Mamu-B loci appears to have occurred, resulting in a hyperplastic B region. Thus, analysis of MIB in addition to B loci allows deciphering of the compound evolutionary history of the class I B region in Old World monkeys

    A Simple Method for Analyzing Exome Sequencing Data Shows Distinct Levels of Nonsynonymous Variation for Human Immune and Nervous System Genes

    Get PDF
    To measure the strength of natural selection that acts upon single nucleotide variants (SNVs) in a set of human genes, we calculate the ratio between nonsynonymous SNVs (nsSNVs) per nonsynonymous site and synonymous SNVs (sSNVs) per synonymous site. We transform this ratio with a respective factor f that corrects for the bias of synonymous sites towards transitions in the genetic code and different mutation rates for transitions and transversions. This method approximates the relative density of nsSNVs (rdnsv) in comparison with the neutral expectation as inferred from the density of sSNVs. Using SNVs from a diploid genome and 200 exomes, we apply our method to immune system genes (ISGs), nervous system genes (NSGs), randomly sampled genes (RSGs), and gene ontology annotated genes. The estimate of rdnsv in an individual exome is around 20% for NSGs and 30–40% for ISGs and RSGs. This smaller rdnsv of NSGs indicates overall stronger purifying selection. To quantify the relative shift of nsSNVs towards rare variants, we next fit a linear regression model to the estimates of rdnsv over different SNV allele frequency bins. The obtained regression models show a negative slope for NSGs, ISGs and RSGs, supporting an influence of purifying selection on the frequency spectrum of segregating nsSNVs. The y-intercept of the model predicts rdnsv for an allele frequency close to 0. This parameter can be interpreted as the proportion of nonsynonymous sites where mutations are tolerated to segregate with an allele frequency notably greater than 0 in the population, given the performed normalization of the observed nsSNV to sSNV ratio. A smaller y-intercept is displayed by NSGs, indicating more nonsynonymous sites under strong negative selection. This predicts more monogenically inherited or de-novo mutation diseases that affect the nervous system

    Molecular Trajectories Leading to the Alternative Fates of Duplicate Genes

    Get PDF
    Gene duplication generates extra gene copies in which mutations can accumulate without risking the function of pre-existing genes. Such mutations modify duplicates and contribute to evolutionary novelties. However, the vast majority of duplicates appear to be short-lived and experience duplicate silencing within a few million years. Little is known about the molecular mechanisms leading to these alternative fates. Here we delineate differing molecular trajectories of a relatively recent duplication event between humans and chimpanzees by investigating molecular properties of a single duplicate: DNA sequences, gene expression and promoter activities. The inverted duplication of the Glutathione S-transferase Theta 2 (GSTT2) gene had occurred at least 7 million years ago in the common ancestor of African great apes and is preserved in chimpanzees (Pan troglodytes), whereas a deletion polymorphism is prevalent in humans. The alternative fates are associated with expression divergence between these species, and reduced expression in humans is regulated by silencing mutations that have been propagated between duplicates by gene conversion. In contrast, selective constraint preserved duplicate divergence in chimpanzees. The difference in evolutionary processes left a unique DNA footprint in which dying duplicates are significantly more similar to each other (99.4%) than preserved ones. Such molecular trajectories could provide insights for the mechanisms underlying duplicate life and death in extant genomes
    corecore