40 research outputs found

    European sea bass (Dicentrarchus labrax) skin and scale transcriptomes

    Get PDF
    Fish skin and their appendages, the mineralized scales, are important organs for protection and homeostasis, but little is known about their specific transcript or protein repertoire. This study used RNA-seq to generate transcriptome data for skin and scales in the European sea bass (Dicentrarchus labrax), an important species for fisheries and aquaculture. RNA was extracted from the pectoral skin and from scales collected above the midline of immature one-year old sea bass. More than 20 x 10(6) reads were obtained for each tissue, using RNA-seq Illumina technology. De novo assembly resulted in 31,842 transcripts (of 500 base pairs or greater) for skin and 20,423 transcripts for scale. This dataset provides a useful resource for both aquaculture and fish conservation studies and for research into the physiology and molecular biology of fish skin and scales. (C) 2017 Elsevier B.V. All rights reserved.Foundation for Science and Technology of Portugal (FCT) [PTDC/AAG-GLO/4003/2012, CCMAR/Multi/04326/2013, SFRH/BPD/84033/2012

    Diversity, expression and mechanism of action of estrogen receptors in sea bream, Sparus auratus

    Get PDF
    Tese dout., Biologia, Universidade do Algarve, 2006Two estrogen receptor subtypes (ERĪ± and ERĪ²) mediate most estrogen actions in vertebrates, including fishes. Furthermore in teleost fishes two ERĪ² genes are differentially expressed. In this thesis, an ERĪ² (sbERĪ²b) was cloned from the hermaphrodite teleost fish sea bream (Sparus auratus) which added to the previously cloned sbERĪ± and sbERĪ²a. sbERĪ²b specifically binds estrogen agonists and antagonists with high affinity. The three sbER genes (Ī±, Ī²a, Ī²b) have a partially overlapping but differential distribution in male and female sea bream tissues and produce multiple transcripts. Two exon2 deleted sbERĪ± variants were also identified with different tissue distribution and hormonal regulation. Estradiol-17Ī² up-regulated the expression of sbERĪ± and down-regulated both sbERĪ²s in liver, suggesting a major role for ERĪ± in vitellogenesis. Agonistic effects were identified for the ā€œpure antiestrogenā€ ICI 182,780 in several estrogenic responses, probably mediated by sbERĪ± up regulation in liver. The immunolocalization of sbER proteins in sea bream scales suggested that the calcium mobilising actions of E2 in scales are via a direct action on osteoclasts. Subtractive hybridization followed by RT-PCR demonstrated for the first time in fish testis the E2 up regulation of some typical liver E2-induced genes (e.g. vitellogenins and choriogenins).FundaĆ§Ć£o para a CiĆŖncia e Tecnologia (FCT

    Oestrogen, an evolutionary conserved regulator of T cell differentiation and immune tolerance in jawed vertebrates?

    Get PDF
    In teleosts, as in mammals, the immune system is tightly regulated by sexual steroid hormones, such as oestrogens. We investigated the effects of 17Ī²-oestradiol on the expression of several genes related to T cell development and resulting T cell subpopulations in sea bass, Dicentrarchus labrax, for a primary lymphoid organ, the thymus, and two secondary lymphoid organs, the head-kidney and the spleen. In parallel, the oxidative burst capacity was assessed in leucocytes of the secondary lymphoid organs. Apoptosis- and proliferation-related genes, indicative of B and T cell clonal selection and lymphoid progenitor activity, were not affected by elevated oestrogen-levels. Sex-related oestrogen-responsiveness in T cell and antigen-presenting cell markers was observed, the expression of which was differentially induced by oestrogen-exposure in the three lymphoid organs. Remarkably, in the spleen, oestrogen increased regulatory T cell-related gene expression was associated with a decrease in oxidative burst capacity. To the best of our knowledge, this study indicates for the first time that physiological levels of oestrogen are likely to promote immune tolerance by modulating thymic function (i.e., T cell development and output) and peripheral T cells in teleosts, similar to previously reported oestrogenic effects in mammals.CCMAR/Multi/04326/2013; ANRfinanced project ETaT(ANR-15-CE32-0014); FR CNRS 3730 SCALE scholarshipinfo:eu-repo/semantics/publishedVersio

    Duplicated membrane estrogen receptors in the European sea bass (Dicentrarchus labrax): Phylogeny, expression and regulation throughout the reproductive cycle

    Get PDF
    The numerous estrogen functions reported across vertebrates have been classically explained by their binding to specific transcription factors, the nuclear estrogen receptors (ERs). Rapid non-genomic estrogenic responses have also been recently identified in vertebrates including fish, which can be mediated by membrane receptors such as the G protein-coupled estrogen receptor (Gper). In this study, two genes for Gper, namely gpera and gperb, were identified in the genome of a teleost fish, the European sea bass. Phylogenetic analysis indicated they were most likely retained after the 3R teleost-specific whole genome duplication and raises questions about their function in male and female sea bass. Gpera expression was mainly restricted to brain and pituitary in both sexes while gperb had a widespread tissue distribution with higher expression levels in gill filaments, kidney and head kidney. Both receptors were detected in the hypothalamus and pituitary of both sexes and significant changes in gpers expression were observed throughout the annual reproductive season. In female pituitaries, gpera showed an overall increase in expression throughout the reproductive season while gperb levels remained constant. In the hypothalamus, gpera had a higher expression during vitellogenesis and decreased in fish entering the ovary maturation and ovulation stage, while gperb expression increased at the final atresia stage. In males, gpers expression was constant in the hypothalamus and pituitary throughout the reproductive cycle apart from the mid- to late testicular development stage transition when a significant up-regulation of gpera occurred in the pituitary. The differential sex, seasonal and subtype-specific expression patterns detected for the two novel gper genes in sea bass suggests they may have acquired different and/or complementary roles in mediating estrogens actions in fish, namely on the neuroendocrine control of reproduction.info:eu-repo/semantics/publishedVersio

    Distribution and cellular localization of sea bream estrogen receptors in calcified tissues

    Get PDF
    In teleost fish, estradiol has been shown to induce calcium mobilization from internal stores, in particular the scales. In the present study, we have localized the estrogen receptor proteins (Ī±, Ī²a and Ī²b) in the scales of juvenile and adult sea bream, using immunohistochemistry with ER isoform-specific antibodies. The ERs co-localized in cells of the scale posterior region that also expressed TRACP, the putative osteoclasts. These results suggest that the calcium mobilising action of estradiol on fish scales is via its direct action on osteoclasts.European Social Fund and National Funds under the project POCTI/CVT/39355/2001 from the Portuguese Foundation for Science and Technology (FCT). PP was funded by the FCT grant POCTI/SFRH/ BD/5198/2001. MDE was in receipt of a PRODEP grant, Programa de Desenvolvimento Educativo para Portugal (medida5/concurso 2/acĆ§Ć£o5.3/2001)info:eu-repo/semantics/publishedVersio

    A fish scale in vitro bioassay to screen for endocrine disrupting compounds

    Get PDF
    A wide range of natural and anthropogenic compounds are accumulating in the aquatic environment, many of which can interact with and disrupt the endocrine system. Estrogenic endocrine disruptors (EDCs) are a particular problem with impact on humans, ecosystems and wildlife and are particularly relevant in aquatic organisms like fish that may experience life-long exposures. The effects of EDCs in fish have mainly been assessed using reproductive endpoints and in vivo animal experiments. We propose that using other potential endpoints, such as the effect of estrogens on mineralized tissue, would allow development of a simple non invasive assay using scales. Fish scales are mineralized tissues that express both membrane and nuclear estrogen receptors, and are targets for natural estrogens and EDCs. The in vitro bioassay optimized in this work includes sampling of fish scales, incubation in culture media containing the tested compounds and measurement of enzymatic activities related to calcium turnover (TRAP, tartrate-resistant acid phosphatase and ALP, alkaline phosphatase). Several variables were optimized including culture media, compounds concentrations and incubation conditions (e.g. temperature, time), using both sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) scales. Significant effects of E2 and EDCs were detected, including both rapid (30 minutes) or slow (1day) changes in scale TRAP or ALP activities, but the responses were of low magnitude and varied with the individual, age, time of year, species and culture conditions. The in vitro fish scale assay is a promising non-invasive screening tool for E2 and EDCs effects, complying with the 3Rs of animal welfare. However, current technical limitations are its limited sensitivity for some parameters eg. TRAP/ALP activity and alternative, sensitive, robust and easy to measure endpoints are under investigation.info:eu-repo/semantics/publishedVersio

    The effects of di-n-butyl phthalate and 4-tert-octylphenol in osteoclastic and osteoblastic activities in teleost fish scales

    Get PDF
    Di-n-butyl phtalate (DBP) and 4-tert-octylphenol (OP) are environmental pollutants with estrogenic activity that have been shown to have endocrine disruptive actions in reproduction of several fish species. However, their impact in bone and scale metabolism, which are estrogen-responsive tissues, remains unknown. In this study, we evaluated the impact of these compounds on mineral metabolism in fish scales that, like bone, are a dynamic tissue maintained by continuous cycles of formation and resorption mediated, respectively, by osteoblasts (OSB) and osteoclasts (OSC). Using an in vitro bioassay, Atlantic sea bass (a marine species) and Mozambique tilapia (a freshwater species) scales were incubated with a range of concentrations of OP and DBP in culture media for a short (30 minutes) or long (24 hours) incubation time. Effects on the activity of tartrate resistant acid phosphatase (TRAP) and alkaline phosphatase (ALP), markers for OSC and OSB activities, respectively, were assessed using a colorimetric enzymatic assay. DBP (10-6 M) affected TRAP activity in both species. While in sea bass, TRAP activity increased with DBP after 30 min incubation but was unaffected after 24 h, in tilapia no alterations were observed at the short term but a significant decrease was observed after 24 h incubation with this compound. None of the tested concentrations (10-10 to 10-6 M) affected ALP activity in both species. On the contrary, OP effects were only observed on the activity of ALP, which was significantly decreased after a 24 h incubation with 10-8 M of OP in the scales of both species. These results suggest that the exposure to these compounds may have disruptive effects on the metabolism of mineralized tissues in both marine and freshwater species. Future studies will investigate the mechanisms involved in these responses and the consequences for fish health.Foundation for Science and Technology of Portugal (FCT), through projects PTDC/AAG-GLO/4003/2012 and PEst-C/MAR/LA0015/2011 and fellowship to PP (SFRH/BPD/84033/2012).info:eu-repo/semantics/publishedVersio

    Gill transcriptome response to changes in environmental calcium in the green spotted puffer fish

    Get PDF
    Abstract Background Calcium ion is tightly regulated in body fluids and for euryhaline fish, which are exposed to rapid changes in environmental [Ca2+], homeostasis is especially challenging. The gill is the main organ of active calcium uptake and therefore plays a crucial role in the maintenance of calcium ion homeostasis. To study the molecular basis of the short-term responses to changing calcium availability, the whole gill transcriptome obtained by Super Serial Analysis of Gene Expression (SuperSAGE) of the euryhaline teleost green spotted puffer fish, Tetraodon nigroviridis, exposed to water with altered [Ca2+] was analysed. Results Transfer of T. nigroviridis from 10 ppt water salinity containing 2.9 mM Ca2+ to high (10 mM Ca2+ ) and low (0.01 mM Ca2+) calcium water of similar salinity for 2-12 h resulted in 1,339 differentially expressed SuperSAGE tags (26-bp transcript identifiers) in gills. Of these 869 tags (65%) were mapped to T. nigroviridis cDNAs or genomic DNA and 497 (57%) were assigned to known proteins. Thirteen percent of the genes matched multiple tags indicating alternative RNA transcripts. The main enriched gene ontology groups belong to Ca2+ signaling/homeostasis but also muscle contraction, cytoskeleton, energy production/homeostasis and tissue remodeling. K-means clustering identified co-expressed transcripts with distinct patterns in response to water [Ca2+] and exposure time. Conclusions The generated transcript expression patterns provide a framework of novel water calcium-responsive genes in the gill during the initial response after transfer to different [Ca2+]. This molecular response entails initial perception of alterations, activation of signaling networks and effectors and suggests active remodeling of cytoskeletal proteins during the initial acclimation process. Genes related to energy production and energy homeostasis are also up-regulated, probably reflecting the increased energetic needs of the acclimation response. This study is the first genome-wide transcriptome analysis of fish gills and is an important resource for future research on the short-term mechanisms involved in the gill acclimation responses to environmental Ca2+ changes and osmoregulation.Peer Reviewe

    Tissue responsiveness to estradiol and genistein in the sea bass liver and scale

    Get PDF
    As in mammals, estrogens in fish are essential for reproduction but also important regulators of mineral homeostasis. Fish scales are a non-conventional target tissue responsive to estradiol and constitute a good model to study mineralized tissues effects and mechanisms of action of estrogenic compounds, including phytoestrogens. The responsiveness to estradiol and the phytoestrogen genistein, was compared between the scales and the liver, a classical estrogenic target, in sea bass (Dicentrarchus labrax). Injection with estradiol and genistein significantly increased circulating vitellogenin (for both compounds) and mineral levels (estradiol only) and genistein also significantly increased scale enzymatic activities suggesting it increased mineral turnover. The repertoire, abundance and estrogenic regulation of nuclear estrogen receptors (ESR1, 2a and 2b) and membrane G-protein receptors (GPER and GPER-like) were different between liver and scales, which presumably explains the tissue-specific changes detected in estrogen-responsive gene expression. In scales changes in gene expression mainly consisted of small rapid increases, while in liver strong, sustained increases/decreases in gene expression occurred. Similar but not overlapping gene expression changes were observed in response to both estradiol and genistein. This study demonstrates for the first time the expression of membrane estrogen receptors in scales and that estrogens and phytoestrogens, to which fish may be exposed in the wild or in aquaculture, both affect liver and mineralized tissues in a tissue-specific manner. (C) 2015 Elsevier Ltd. All rights reserved

    Understanding pseudo-albinism in sole (Solea senegalensis): a transcriptomics and metagenomics approach

    Get PDF
    Pseudo-albinism is a pigmentation disorder observed in flatfish aquaculture with a complex, multi-factor aetiology. We tested the hypothesis that pigmentation abnormalities are an overt signal of more generalised modifications in tissue structure and function, using as a model the Senegalese sole and two important innate immune barriers, the skin and intestine, and their microbiomes. Stereological analyses in pseudo-albino sole revealed a significantly increased mucous cell number in skin (Pā€‰<ā€‰0.001) and a significantly thicker muscle layer and lamina propria in gut (Pā€‰<ā€‰0.001). RNA-seq transcriptome analysis of the skin and gut identified 573 differentially expressed transcripts (DETs, FDRā€‰<ā€‰0.05) between pseudo-albino and pigmented soles (one pool/tissue from 4 individuals/phenotype). DETs were mainly linked to pigment production, skin structure and regeneration and smooth muscle contraction. The microbiome (16ā€‰S rRNA analysis) was highly diverse in pigmented and pseudo-albino skin but in gut had low complexity and diverged between the two pigmentation phenotypes. Quantitative PCR revealed significantly lower loads of Mycoplasma (Pā€‰<ā€‰0.05) and Vibrio bacteria (Pā€‰<ā€‰0.01) in pseudo-albino compared to the control. The study revealed that pseudo-albinism in addition to pigmentation changes was associated with generalised changes in the skin and gut structure and a modification in the gut microbiome.AgĆŖncia financiadora H2020 European Funds MSCA-RISE project 691102 Portuguese national funds from FCT - Foundation for Science and Technology UID/Multi/04326/2019 Portuguese national funds from the operational programme CRESC Algarve 2020 EMBRC. PT ALG-01-0145-FEDER-022121 Portuguese national funds from the operational programme COMPETE 2020 EMBRC. PT ALG-01-0145-FEDER-022121 European Union (EU) 654008 Fundacao para a Ciencia e a Tecnologia (FCT) SFRH/BPD/84033/2012 Portuguese Institute for Employment and Vocational Training 0068/ET/18info:eu-repo/semantics/publishedVersio
    corecore