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Abstract 

The numerous estrogen functions reported across vertebrates have been classically explained by their 

binding to specific transcription factors, the nuclear estrogen receptors (ERs). Rapid non-genomic 

estrogenic responses have also been recently identified in vertebrates including fish, which can be 

mediated by membrane receptors such as the G protein-coupled estrogen receptor (Gper). In this study, 

two genes for Gper, namely gpera and gperb, were identified in the genome of a teleost fish, the 

European sea bass. Phylogenetic analysis indicated they were most likely retained after the 3R teleost-

specific whole genome duplication and raises questions about their function in male and female sea 

bass. Gpera expression was mainly restricted to brain and pituitary in both sexes while gperb had a 

widespread tissue distribution with higher expression levels in gill filaments, kidney and head kidney. 

Both receptors were detected in the hypothalamus and pituitary of both sexes and significant changes 

in gpers expression were observed throughout the annual reproductive season. In female pituitaries, 

gpera showed an overall increase in expression throughout the reproductive season while gperb levels 

remained constant. In the hypothalamus, gpera had a higher expression during vitellogenesis and 

decreased in fish entering the ovary maturation and ovulation stage, while gperb expression increased 

at the final atresia stage. In males, gpers expression was constant in the hypothalamus and pituitary 

throughout the reproductive cycle apart from the mid- to late testicular development stage when a 

significant up-regulation of gpera occurred in the pituitary. The differential sex, seasonal and subtype-

specific expression patterns detected for the two novel gper genes in sea bass suggests they may have 

acquired different and/or complementary roles in mediating estrogens actions in fish, namely on the 

neuroendocrine control of reproduction. 

 
Keywords: brain, evolution, G protein-coupled estrogen receptors, pituitary, reproduction, teleost 

 

Abbreviations: 18s, 18S ribosomal RNA; 7TM, seven transmembrane domains; aa, amino acids; 

CDS, coding sequence; E2, 17-estradiol; Ef1α, elongation factor 1-alpha; Esr, nuclear estrogen 
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receptor; Fsh, follicle stimulating hormone; GPCRs, G-protein coupled receptors; Gper, G protein-

coupled estrogen receptor; Gnrh, gonadotropin-releasing hormone; GSI, gonadosomatic index; HPG 

axis, Hypothalamus-Pituitary-Gonads axis; Lh, luteinizing hormone; qPCR, quantitative polymerase 

chain reaction. Protein and gene nomenclature followed that recommended by genenames.org and used 

for fish at http://zfin.org/; in this abbreviation list, for each case protein abbreviation is presented first 

followed by the corresponding gene abbreviation. 
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1. Introduction 

Estrogens are a group of sex steroid hormones that are essential for reproductive functions in both 

female and male vertebrates. They are involved in the regulation of gonadotropin levels, 

spermatogenesis, oogenesis or vitellogenesis (in oviparous animals) and are in part responsible for the 

development of female secondary sex characteristics [1]. Estrogens are mainly produced in the ovaries 

of active females and may feedback on the hypothalamus and pituitary that contain a high density of 

nuclear estrogen receptors (Esrs), regulating the expression and release of gonatropin-releasing 

hormone (Gnrh) and gonadotropins Fsh (follicle-stimulating hormone) and luteinizing hormone (Lh) 

[1, 2]. Non-reproductive functions regulated by estrogens include cognitive and cardiovascular 

functions and skeletal homeostasis [3].   

In the classical model of action, estrogens diffuse through the cell membrane and interact with specific 

intracellular nuclear receptors, two of which, Esr1 and Esr2, exist in terrestrial vertebrates while in fish 

three forms, one Esr1 and two Esr2s (expressed from duplicate genes) have been detected [4]. The 

resulting ligand-receptor complex binds to specific response elements in the promoter regions of target 

genes and regulates their transcription, a process that can take hours or days to be completed [5, 6]. 

Several alternative mechanisms of estrogen action have been described including indirect genomic 

effects through interaction with other transcription factors or rapid non-genomic effects initiated by 

binding to membrane receptors [5, 7] that can produce effects within minutes [8]. No consensus exists 

about the identity of the membrane receptors mediating non-genomic effects of estrogens and they 

have been attributed to membrane sub-populations of nuclear estrogen receptors or to novel membrane 

receptors such as the G protein-coupled estrogen receptor, Gper (formerly known as Gpr30). The 

multitude of signaling responses evoked by estrogens makes it likely that both nuclear and membrane 

bound receptor types contribute to the complexity of cellular mechanisms of estrogenic action [3, 7, 

8].  The involvement of Gper in mediating estrogens actions was first proposed by Filardo et al. [9] 

when rapid estrogen activation of the second messenger cyclic AMP (cAMP) and of mitogen-activated 
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protein kinases (Erk1/2) was observed in a human breast cancer cell line that lacks Esrs. In 2005, Peter 

Thomas’s and Prossnitz’s groups independently demonstrated that human Gper displays high affinity 

estrogen binding and has the binding characteristics of a membrane estrogen receptor [10, 11]. Since 

then numerous studies have characterized Gper signaling, tissue expression and functions from fish to 

mammals [8, 12, 13], many by using a selective Gper agonist (G-1) that does not activate ERs or by 

using gene knockdown technologies.  

In mammals, Gper is expressed in a variety of tissues and it appears to mediate estrogens protective 

effects on the nervous, immune and cardiovascular system and to be involved in the regulation of 

glucose, lipid and mineral metabolism [reviewed in 8, 13]. In the mammalian reproductive system, 

Gper has been associated with 17β-estradiol (E2) regulation of primary follicle formation and uterine 

proliferation and contraction in females and to proliferative or apoptotic pathways during 

spermatogenesis in males, and it is also implicated in endometrial, ovarian, breast, prostate and 

testicular cancers [8, 13]. 

In fish, Gper expression has been reported in brain, testis and in the ovary and a clear role in mediating 

E2 effects on meiotic arrest and inhibition of oocyte maturation has been established [14, 15]. We 

recently reported the existence of two Gper forms encoded by different genes in the European sea bass 

[16] and showed in liver and scales different patterns of tissue expression and regulation by E2 and 

the phytoestrogen genistein. The novel membrane receptor identified (designated gperl) was the 

preponderant estrogen receptor, together with the nuclear esr2 form, expressed in sea bass and 

Mozambique tilapia scales [17]. This study suggested Gperl most likely mediates the rapid effects of 

E2 and estrogenic pollutants that were detected on scale enzyme activities related to mineral turnover. 

In the European eel, a basal teleost, two Gper forms have also been isolated that have a different tissue 

distribution and regulation in response to experimentally-induced maturation in both sexes [18, 19].     

In the present study, we report the isolation of full-length cDNAs encoding the two sea bass Gpers, 

their phylogeny and their tissue distribution across adult male and female tissues, to give insight into 
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the evolution and function of two Gper forms in teleost fish. To test the hypothesis that they are 

involved in mediating the action of estrogens on reproduction via the hypothalamus - pituitary unit, 

we investigated the patterns of expression of the two gpers in male and female sea bass across their 

annual reproductive cycle. 

 

2. Methods 

2.1. Animals and sampling 

The European sea bass used for cloning and evaluating the tissue distribution of gpers were obtained 

from local fish farms and maintained at Ramalhete Marine Station (Faro, Portugal) in 500-1000 L 

flow-through seawater tanks, under natural photoperiod (between 10:14 hours light:dark in winter, and 

15:9 in summer) and natural temperatures (between 11ºC in winter and 25ºC in summer). Fish were 

fed once a day (1% wet fish weight) with commercial food pellets (Sparos, Portugal).  Three-years-

old sea bass (four adult females of 569-778 g and 36.5-42 cm total length and four adult males of 215-

533 g and 28-38 cm) were collected in early October, at the beginning of gametogenesis. Fish were 

anesthetized with a lethal dose of tricaine methanesulfonate (MS 222, Sigma-Aldrich), washed with 

clean seawater and then measured and weighed. The following tissues were collected from sacrificed 

fish and immediately frozen in liquid nitrogen and stored at -80ºC until RNA extraction: eye, pituitary, 

brain, gonads (ovary and testis), liver, adipose tissue, head kidney, kidney, intestine (mid gut), gill 

filaments, scales and vertebra. Manipulation of animals was performed in compliance with 

international and national ethics guidelines for animal care and experimentation (Guidelines of the 

European Union Council, 86/609/EU). Animal maintenance and experimentation was carried out by 

certified investigators (DMP and PISP) and in certified experimental facilities, following national 

legislation of Portugal (DL 113/2013) under a 'group-1' license issued by the Veterinary General 

Directorate, Ministry of Agriculture, Rural Development and Fisheries of Portugal. 
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The expression of gper transcripts was characterized throughout the annual reproductive cycle in male 

and female sea bass pituitary and hypothalamus using RNA samples from the study of Alvarado et al., 

2013 [20]. Briefly, two-years-old males and three-years-old females were sampled from August to late 

April, covering their first annual reproductive season from beginning of gametogenesis to rest. 

Anaesthetized fish were killed, pituitary and brain were collected and then the hypothalamus dissected 

out. Tissue samples were snap frozen and stored at -80 ºC until RNA extraction. The developmental 

stage of the gonads was determined by histology, following the classifications previously described 

for this species [21, 22]. This classification was used to divide collected pituitary and hypothalamus 

samples into the following developmental stages for male (Stage I, immature stage; Stage II, early 

recrudescence; Stage III, mid recrudescence; Stage IV, late recrudescence; Stage V, full spermiating 

testes and Stage VI, rest) and female (PV, previtellogenesis; V, vitellogenesis; M, maturation-

ovulation and A, atresia), as described in Alvarado et al. 2013 [20].  

 

2.2. RNA extraction and cDNA synthesis 

Total RNA for tissue distribution was extracted from frozen tissues using a Maxwell 16 robot and 

Maxwell 16 SEV total RNA purification kit (Promega, Southampton, UK). Initially all tissues were 

subjected to mechanical disruption using an Ultra Turrax homogenizer (IKA, Germany) equipped with 

a dispersing element S25N–8-G or S25N-8G-ST (for scales). To facilitate RNA extraction vertebra 

were first pulverized with a hammer before mechanical disruption. Total RNAs from the pituitary and 

hypothalamus collected during the sea bass annual reproductive cycle were extracted using Maxwell 

16 LEV kits, as described in Alvarado et al., 2013 [20]. RNA integrity and purity was analyzed by 1% 

agarose gel electrophoresis and RNA was quantified in a NanoDrop 1000 Spectrophotometer (Thermo 

Fisher Scientific, USA). For both sample panels (tissue distribution or annual cycle), total RNA (1-8 

µg, depending on the tissue) was treated with DNase (DNA-free kit, Ambion, UK) and cDNA 

syntheses were carried out in 20 µl reactions containing 500 ng of DNase-treated RNA, 200 ng of 
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random hexamers (Jena Biosciences, Germany), 100 U of RevertAid reverse transcriptase and 8 U of 

Ribo-Lock RNase Inhibitor (Fermentas, Thermo Fisher). Reactions were incubated for 10 min, at 25 

ºC, and then 60 min at 42 ºC, followed by enzyme inactivation for 10 min, at 70 ºC, and storage at -20 

ºC until use. 

 

2.3. Identification and cloning of sea bass Gpers 

Teleost Gper amino acid sequences retrieved from Ensembl (http://www.ensembl.org/index.html) and 

NCBI (http://www.ncbi.nlm.nih.gov/) databases (Table S1) were used as queries to search the sea bass 

genome at http://seabass.mpipz.de/ [23], using BLAT [24]. Two gper genes were identified, initially 

designated as gper and gperl [16, 17] and now renamed gpera and gperb, based on the phylogenetic 

tree results (see below). Specific primers were designed to amplify and clone the complete coding 

regions of gpera and gperb (Table 1) after retrieving their predicted genomic sequences.  

 
Table 1 - List of primers used in this study to clone the full-length coding region of each sea bass Gper 
and for gene expression analyses by quantitative RT-PCR. 

 
Objective Gene name 

abbreviation 
Primer namea Primer sequence (5´-3´) Tab bpc 

Cloning gpera GPERa_F1 
GPERa_R1 

ATGGAAGTGCAGACAACCTCTC 
TCACACCTCTGACACTTCGCTC 

58 1065 

 gperb GPERb_F1 
GPERb_R3 

ATGGAGAATCACTTGTCTGTTAAAC 
GAAATGGTAGGCATGGATGG 

57 1241 

RT-PCR gpera GPERa_RT_F1 
GPERa_RT_R1 

GCCACCCTTCTCCCTTTCACC 
TTCGCCCAATCAGAGAGTAGCAT 

62 157 

 gperb GPERb_RT_F1 
GPERb_RT_R1 

ACAGCAGCGTCTTCTTCTTAACC 
AGATGAGGACACCCAGATAAGGCAG 

60 122 

Reference 
genes 

ef1α Fw 
Rv 

GACACAGAGACTTCATCAAG 
GTCCGTTCTTAGAGATACCA 

58 114 

 18s Fw 
Rv 

TGACGGAAGGGCACCACCAG 
AATCGCTCCACCAACTAAGAACG 

60 158 

a F denote “forward” primers and R denote “reverse” primers. b Optimized annealing temperature used for each pair of 
primers. c Amplicon size in base pairs (bp) 
 

While the gpera gene (DLAgn_00191960) was predicted to be encoded by a single exon, the gperb 

(DLAgn_00100480) gene prediction indicated it contained an intron at the end of the coding region, 

and differed from the longer, single-exon transcript predicted in NCBI for this gene (Accession number 
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FQ310507.3; see Fig. S1). For this reason, only one pair of primers was designed to amplify the gpera 

coding region (“Gpera_F1” and “Gpera_R1”) while several pairs of primers were designed to verify 

the gene structure of gperb and clone the full-length cDNA and possible alternative transcripts (Fig. 

S1). Samples used for gene cloning were tested using sea bass cDNAs from several tissues (testis, gill, 

ovary, brain, kidney and head kidney) and successful amplification of a full-length gperb transcript 

was achieved with the primers “Gperb_F1” and “Gperb_R3” in adult sea bass testis (Table 1, Fig. S1). 

To clone the full-length gper cDNAs, reverse transcription-polymerase chain reactions (RT-PCR) of 

25 µL contained 1 µL of cDNA, 10 pmol of each primer, 50 µM dNTPs and 0.5 U DreamTaq DNA 

Polymerase (Fermentas) were performed. Cycling conditions were 5 min at 95 ºC followed by 35 

cycles of denaturation for 20 s at 95 ºC, 20 s of annealing at the optimized temperature for each primer 

pair (Table 1) and 1 min of extension at 72 ºC, followed by a final extension of 5 min at 72 ºC. 

Amplified targets were gel-purified, inserted into pGEM-T Easy (Promega, UK) and their identity was 

confirmed by sequencing. Positive clones for the two gpers were re-sequenced to give at least 3-fold 

coverage. The final sea bass gper cDNA sequences were assembled using the CAP contig assembling 

program [25]. A proofreading DNA polymerase was used to confirm the full-length gperb cDNA gene 

structure and sequence, which was amplified by RT-PCR in a total volume of 20 µL containing 1 µL 

of testis cDNA, 10 pmol of each primer “Gperb_F1” and “Gperb_R3”, 200 µM of each dNTP and 0.4 

U Phusion® Hot Start DNA Polymerase (Finnzymes), in 5x Phusion® HF Buffer. Cycling conditions 

were 3 min at 98 ºC, 35 cycles of 10 s at 98 ºC, 30 s at 60 ºC and 50 s at 72 ºC, followed by 10 min at 

72 ºC. 

 

2.4. Sequence characterization and phylogenetic analysis 

The genomic organization of sea bass gpera and gperb genes was characterized by aligning the cloned 

full-length cDNA with the genomic sequence using ClustalW v.2.0 [26]. Multiple sequence alignments 

of deduced amino acid (aa) sequences for sea bass Gper with those of human (Homo sapiens), spotted 
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gar (Lepisosteus oculatus), zebrafish (Danio rerio) and European eel (Anguilla anguilla) (accession 

numbers presented in the legend of Fig. 1) were carried out using ClustalW and edited using GeneDoc 

version 2.7.0 [27]. The deduced sea bass Gper protein sequences were analyzed using TMHMM v. 2.0 

[28] to predict transmembrane regions.  

The deduced aa sequences of the sea bass Gpers were used as queries to search for Gpers in vertebrates, 

using tBLASTN against publicly available DNA databases (Ensembl for genomes and Genbank for 

mRNAs and expressed sequence tags) or BLASTP against the protein database in Genbank [29].  

The phylogenetic tree was built using the deduced aa sequences between the seven transmembrane 

domains (7TM) in Gpers, aligned in ClustalW 2.0, and PROTTEST version 2.4 [30] was used to select 

the model of protein evolution that best fitted the dataset. The final tree was constructed using the 

maximum likelihood (ML) method in PhyML 3.0 [31] with 100 bootstrap replicates using a JTT 

substitution model with a discrete gamma distribution of rates among sites with 4 categories. 

Additional Gper sequences used in phylogenetic analyses included sequences from sarcopterygians 

(tetrapods and a basal sarcopterygian, an actinistian, the coelacanth, Latimeria chalumnae) and 

actinopterygians (teleosts and a non-teleost actinopterygian, the spotted gar). The Gper sequence of a 

chondrichthyan (Elephant shark, Callorhinchus milii) was used as outgroup.  

 

2.5. Analysis of gpers gene expression 

Quantitative real time RT-PCR (qPCR) was carried out to measure transcript abundance of gpers in 

several tissues and in the hypothalamus and pituitary collected from several time points during the 

annual reproductive cycle. The relative standard curve method and EvaGreen chemistry were used, as 

previously described [32]. Reactions were performed in duplicate and contained 1x Sso Fast EvaGreen 

Supermix (Bio-Rad), 300 nM of each specific primer (Table 1) and 2 µL of each cDNA (diluted 1:5) 

in a final volume of 15 µL. Initially, to determine the relative abundance of gpera and gperb transcripts 

in each tissue, pools of cDNAs from several individual samples (n = 3 - 4 male or female per tissue) 
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were analyzed. Expression of gpera and gperb was then quantified by qPCR in individual cDNA 

samples of tissues that contained detectable levels of expression. For the reproductive cycle, 3-6 males 

and 4-8 females were used per sampling point. 

Reactions were run for 40 cycles using the cycling conditions recommended by the supplier and the 

optimized annealing temperatures for gpera/gperb primers (Table 1). All qPCR reactions had a single 

product melt curve and primer specificity was confirmed by sequencing the amplicons. No 

amplification products were obtained when reverse transcriptase was omitted from the cDNA synthesis 

reactions (negative RT control), confirming the absence of genomic DNA contamination. Standard 

curves prepared from serial dilutions of quantified amplicons for each gene were included in all qPCR 

plates to permit product quantification and for determination of the reaction efficiency, which ranged 

between 97% and 103% with R2 > 0.99. 

The stability of two reference genes (18S ribosomal RNA sub-unit, 18s, and elongation factor 1a, ef1α) 

was evaluated for both tissue panels, by analyzing the Cts (threshold cycles) using RefFinder (available 

at 150.216.56.64/referencegene.php) that integrates the geNorm, Normfinder, BestKeeper and 

Comparative Ct methods [33-36]. Since both reference genes were stable, all data was normalized by 

the geometric mean of these two genes. Copy number of target or reference genes were calculated 

using the following equation: number of copies = (X ⁄ NA)/(Y x 1 x 109 x 650), where X is the initial 

template amount (ng of the amplicon fragment), NA is Avogadro’s number, Y is the template length 

(bp of each amplicon), and 650 (Da) is the average weight of a base pair [37, 38]. Gper normalized 

expression was calculated by dividing the obtained gene copy number for the samples of the tissue 

distribution and the annual cycle panels by the geometric mean of the two reference genes.  

 

2.6. Statistical Analysis 

Results are expressed as the mean ±standard error of the mean (SEM). Statistical differences between 

groups at each sampling point of the annual reproductive cycle were analyzed by one-way analysis of 
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variance (one-way ANOVA, SigmaStat v.3.50, Systat Software, USA) followed by a post-hoc Tukey 

test. Statistical significance was set at p < 0.05. 

 

3. Results 

3.1. Identification of two estrogen membrane receptors in sea bass 

Two gper genes were identified in the sea bass genome: DLAgn_00191960 gene (gpera; formerly 

designated as gper) in position LG8:11487608-11488672 and DLAgn_00100480 gene (gperb; 

formerly designated as gperl) in position LG1B:5202057-5203200, and both were annotated as “g-

protein coupled estrogen receptor 1-like”.  

The predicted coding sequence (CDS) of European sea bass gpera was 1065 bp in length, it consisted 

of a single exon coding for a 354 aa protein and was isolated from adult sea bass testis cDNA. This 

form shared the highest sequence similarity with previously reported gpers in other teleost species [19, 

39, 40] and has been deposited in Genebank (accession number MF508726). For sea bass gperb, two 

gene structure predictions were available from public databases (Fig. S1). In the sea bass genome 

database, the DLAgn_00100480 coding region was 1026 bp and was interrupted by a predicted intron 

of 118 bp followed by the last 5 nucleotides containing the termination codon “TGA”, encoding a 

predicted protein of 341 aa. The gene prediction in the NCBI database (positions 3849949-3851163 of 

the chromosomal sequence with Accession FQ310507) showed a coding sequence on a single exon of 

1215bp, ending with a termination codon “TAA” and encoding a predicted protein of 404 aa. A survey 

of different sea bass tissues using different primer combinations for possible gperb transcripts (Fig. 

S1) resulted in the isolation of a full-length transcript of 1241 bp. This transcript was isolated from 

adult sea bass testis and contained the single exon coding sequence of 1215 bb, confirming the gperb 

structure (deposited in Genebank with Accession No. MF508727). 

 Analysis of the deduced aa sequences of Gpera and Gperb revealed that both contained seven highly 

conserved transmembrane domains, which is the signature of GPCRs (G-protein coupled receptors) 
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(Fig. 1). The eight cysteines typical of vertebrate Gpers were also conserved in sea bass Gpers (Fig. 

1). The exception to this was the substitution of the first cysteine by serine in sea bass Gperb (in the 

first transmembrane domain; Fig.1). Substitutions were also found in the same position of Gperb in 

several other teleost species (substitution to serine in O. niloticus, M. zebra, O. latipes and G. aculeatus 

and to glycine in X. maculatus and in P. reticulata; data not shown, observed in the multisequence 

alignment carried out for the phylogenetic analysis). The European eel was the only teleost analyzed 

that has conserved this cysteine residue (Fig.1). 

 

Fig. 1 – The deduced amino acid sequence of Gpera and Gperb contain conserved features typical of 
GPCRs. The figure shows the multiple sequence alignment (MSA) of the sea bass deduced Gpera and 
Gperb proteins with human Gper (NP_001496.1), spotted gar Gper (ENSLOCP00000022201), zebrafish 
Gper (NP_001122195.1) and the European eel Gpera (CUH82770.1) and Gperb (CUH82771.1) 
proteins. Amino acid conservation between the proteins in different species is shaded and the 
transmembrane domains (TM1-7) predicted by comparison to mammalian and fish Gpers are indicated 
with solid lines above the MSA. The cysteine residues typically conserved in Gpers are indicated by a 
black square above the MSA (the first cysteine in sea bass Gperb is replaced by serine). 

 



15 
 

 
 

3.2. Phylogenetic analysis of Gpera and Gperb 

A phylogenetic tree was constructed using the maximum likelihood method (Fig. 2), based on the 

alignment of 29 Gper sequences from fish to tetrapods. The analysis clustered the Gper sequences into 

two main branches, the Sarcopterygian Gper branch and a branch containing Actinopterygian Gpers. 

This Actinopterygian branch was organized into two branches that corresponded respectively to Gpera 

and Gperb and revealed that in a number of teleost fish species the gper gene duplicated and persisted. 

The spotted gar (Lepisosteus oculatus) Gper branched in a basal position in relation to the teleost 

sequences and the coelacanth (Latimeria chalumnae) Gper branched at the base of Sarcopterygian, as 

expected. Based on these results, the nomenclature of the two previously reported partial sea bass 

Gpers transcripts (gper and gperl) was modified to gpera and gperb, respectively. 

 

Fig. 2 – Phylogenetic analysis suggests that a duplication of Gper occurred in teleosts. The figure shows 
the phylogenetic tree of 29 Gper amino acid sequences from fish and tetrapods, performed using the 
Maximum likelihood method with 100 bootstrap replicates (for the references of sequences see table 
S1). The Callorhinchus milii (elephant shark) Gper was used to root the tree. The bootstrap support for 
each fork are indicated. 

 

3.3. Tissue distribution of sea bass gpera and gperb 

The tissue distribution of both gpera and gperb transcripts was investigated and their expression was 

observed in a wide range of adult sea bass tissues from both sexes (Fig. 3). Gpera mRNA levels were 
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higher in pituitary and brain from both sexes while gperb had a more widespread distribution. In the 

gonads, dimorphic expression was suggested with higher expression in testis compared to ovary for 

both gpers. The highest expression levels for gperb were found in gill filaments followed by head 

kidney and kidney in both sexes and in male intestine. 

 

Fig. 3 – Gpera is more abundant in pituitary and brain from both sexes while gperb has a more 
widespread tissue distribution. Sea bass gpera (A) and gperb (B) transcript expression were measured 
in a panel of tissues from both sexes using qPCR and normalized by dividing calculated gene copy 
number by the geometric mean of the two reference genes 18s and ef1α. Data are presented as mean ± 
SEM (n = 3-4). 

 

3.4. Gpera and gperb transcript expression throughout the reproductive cycle 

Since expression of both gpers was detected in the brain and pituitary of both male and female adult 

sea bass, their expression was evaluated in pituitary and hypothalamus across the annual reproductive 

cycles in order to investigate their possible involvement in the central control of reproduction in sea 

bass. In female sea bass both gper forms were expressed in the hypothalamus (Fig. 4A) and pituitary 

(Fig. 4B) throughout the entire reproductive cycle. In the hypothalamus, gpera decreased significantly 
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in fish in the ovary maturation-ovulation stage relative to fish in vitellogenesis, restoring its levels at 

the final atresia stage, while gperb tended to increase along the reproductive cycle and was most 

abundant in females with eggs in atresia (Fig. 4A).  

In female pituitaries (Fig. 4B), a similar pattern was observed for gpera which also had a higher 

expression in the atresia stage, while abundance of gperb did not vary significantly along the 

reproductive season. Both gper forms were also expressed in male hypothalamus (Fig. 4C) and 

pituitary (Fig. 4D) throughout the entire reproductive cycle, although significant changes in expression 

were only detected for gpera in the pituitary and it increased when fish progressed from mid to late 

testicular development (stage III to IV; Fig. 4D). 

 

Fig. 4 – Gpera and gperb are regulated in the hypothalamus and pituitary of both sexes during the 
reproductive cycle. Transcript expression of sea bass gpera and gperb was analyzed by qPCR in female 
(A) and male (C) hypothalamus and in female (B) and male (D) pituitary during the reproductive cycle. 
For details about the ovarian and testicular development stages see section 2.1. Transcript levels were 
normalized by dividing calculated gene copy number by the geometric mean of the two reference genes 
18s and ef1α. Data are presented as mean ± SEM. The numbers in parentheses represent the number of 
individuals analyzed at each sampling point. Different letters above the bars indicate significant 
differences between gonadal stages. 
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4. Discussion 

In the present study we isolated the full-length cDNAs for two gper genes (gpera and gperb) previously 

detected in European sea bass [16]. Phylogenetic analysis showed that the sea bass gper genes have 

been originated from the teleost specific whole genome duplication (3R), which occurred 

approximately 400 million years ago. These findings are in agreement with those observations in the 

European eel [19, 41]. Although duplicate gper genes have been identified in other teleost species, 

they are not present in the spotted gar, a representative of the ray-finned fish that preceded the teleost 

radiation, or the coelacanth, a basal lobe-finned fish which did not undergo tetraploidization. Only a 

single gper gene has been identified in zebrafish and in Atlantic croaker [15, 39, 40], indicating likely 

loss of the second copy occurred in these species [19]. The conservation of the 7TM domain structure 

and cysteines typical of Gpers [15, 19] in teleosts with duplicate gper genes suggests the duplicate 

gpers are likely to be functional. Interestingly, the cysteine in the first TM domain of teleost Gperb 

was substituted by other small non-polar amino acids (serine or glycine), although it was conserved in 

the basal teleost, European eel. It would be interesting to investigate if these changes affect receptor 

structure and consequently teleost Gperb function. 

The tissue distribution analysis show that gpera is highly expressed in pituitary and brain, as reported 

in the European eel gpera [19]. The brain was also one of the main sites of expression of the single 

gper gene in the Atlantic croaker and zebrafish [15, 39]. In sea bass, the preponderance of gpera 

relative to gperb in the pituitary and brain of both males and females suggested a role in mediating 

rapid estrogen actions in these tissues. In this context, we decided to further investigate their expression 

patterns in these tissues across the male and female annual reproductive cycles (see below). 

Gpera was also expressed at lower levels in other tissues including the testis, where rapid estrogen 

effects on androgen production have previously been reported associated with estrogen-binding 

properties of testicular membrane preparations in Atlantic croaker, although the receptor(s) involved 
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were not identified [42]. The ovary is a tissue where a clear role for gpers has been established in the 

E2-inhibition of meiotic arrest in the Atlantic croaker and zebrafish [14], at the oocyte maturation 

stage. In the present study, low expression levels were detected in sea bass ovary of the analyzed 

females, which were sampled at the beginning of the reproductive cycle. To complement these results, 

it would be of interest to investigate the expression of gpera receptor in sea bass ovaries, sampled at 

other stages of the female reproductive cycle. 

Sea bass gperb had a more widespread distribution in the analyzed tissues, with highest expression in 

tissues related to osmoregulation such as the gill filaments, kidney and intestine. This suggests that 

gperb could be one of the mediators of observed E2 effects on calcium uptake in gill filaments and 

intestine, contributing to the described increase in calcium plasma levels in response to both 

physiological increases in circulating E2 during the female reproductive season and to exogenous 

estrogen treatments [7, 43]. Possible effects in the regulation of other aspects of mineral homeostasis 

and possible interaction of Gpers with mineralocorticoid receptors (MR), as described in human breast 

cancer cells [44], remain to be investigated. The high expression of sea bass gperb in both male and 

female head kidney suggests gperb could be the membrane receptor mediating effects of estrogen 

action. In fact estrogen effects on the head kidney adaptive immune function at different life stages in 

fish have been previously suggested based on Gper expression analysis and the effects of the Gper 

selective agonist G-1 [45-49].  

Non-reproductive effects have also been reported and gperb, together with the nuclear estrogen 

receptor esr2a, appear to be the main estrogen receptors in sea bass and Mozambique tilapia scales 

[16, 17]. In agreement with previous reports, in this study gperb and not gpera was detected in sea 

bass scales. In sea bass scales, both gperb and esr2a were shown to be up-regulated by E2 and the 

phytoestrogen genistein, and so gperb is a good candidate for mediating their effects on mineral 

homeostasis, as some of these effects are rapid and consistent with mediation through membrane 

receptors [7, 17, 50]. Both gpera and gperb were also expressed at low levels in sea bass vertebra of 
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both sexes. In mammals, Gper is expressed in osteocytes, osteoclasts, osteoblasts and chondrocytes 

and Gper-deficiency models and the use of Gper agonists demonstrate its involvement in estrogen-

induced bone growth and development [13]. It will be interesting to investigate in the future the 

expression of Gper duplicates in fish bone and their possible role in this tissues homeostasis. 

Considering that both gpera and gperb are expressed in sea bass pituitary and brain and that the brain-

pituitary-gonad axis (HPG) is where the main neuropeptides related to reproduction are localized [51, 

52], we analyzed the receptors expression in pituitary and hypothalamus throughout the annual 

reproductive season of this species. In males, both gpers were expressed at constant levels in the 

hypothalamus. Similarly, gonadotropin-releasing hormone 1 (gnrh-1) [20] also did not change in the 

same animals at this brain level and it has been proposed to play a continuous role in maintaining 

spermatogenesis throughout the reproductive season [53]. However, a significant increase was 

detected for gpera expression in the pituitary, and its expression increased from mid- to late 

recrudescence and remained constant through advanced spermatogenesis (spermiation and rest stages). 

Although circulating E2 levels remain relatively low and constant in male sea bass at these stages [54], 

the shift in gpera expression coincides with reported increases in pituitary expression and circulating 

levels of gonadotropin (Fsh and Lh), important regulators of spermatogenesis and gametogenesis [20, 

54-56]. The pituitary expression of gpers supports the idea that they may mediate estrogens effects in 

this tissue along the gonadal cycle. Whether the increase in gpera at the last stages of testicular 

maturation is related to possible functions regulating gonadotropin synthesis or release remains to be 

investigated. 

In female hypothalamus a slight increase in gpera expression was observed in the vitellogenesis stage 

followed by a significant decrease when fish entered the maturation-ovulation stage while gperb 

expression increased throughout the cycle. In the pituitary, gpera expression increased throughout the 

cycle reaching significantly higher levels at the atresia stage while gperb did not vary significantly. 

These differential patterns of expression in both tissues suggest that gpera and gperb may have 
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acquired different functions in the central neuroendocrine regulation of the female sea bass 

reproductive cycle.  

The higher expression levels of hypothalamic gpera in the vitellogenesis stage coincides with the 

highest levels of Fsh in plasma, which acts on the ovaries to stimulate E2 synthesis and gametogenesis 

[56-58]. It also coincides with the highest E2 plasma levels that stimulate hepatic synthesis of 

vitellogenin that accumulates in the yolk of growing oocytes [22, 55, 57, 59]. The highest levels of 

gperb were found in female sea bass hypothalamus at advanced stages of ovarian development when 

high hypothalamic expression of gnrh-1, the main hypophysiotropic form in sea bass [60] occurred in 

the same animals [20]. This coincided with high circulating levels of Lh, the major regulator of late 

gametogenesis, and of maturation inducing hormones [55, 61, 62]. Taken together these results suggest 

gpera mediates estrogens effects in the hypothalamus at the beginning of the female sea bass 

reproductive cycle, while gperb mediates estrogens effects mainly at later stages of oogenesis. In 

experimentally induced maturation of female European eels the duplicate gpers also had a differential 

response with gpera being up-regulated in the anterior brain and both forms down-regulated in the 

pituitary [19]. In summary, the results from both eel and sea bass suggest the duplicate gpers have 

acquired different functions in reproduction.  

Both negative and positive feedback effects of sex steroids have been reported on regulating 

gonadotropin levels in the fish HPG axis although the sense of this regulation appears to depend on 

the species or the timing [2]. In sea bass, both testosterone and estradiol were shown to significantly 

decrease pituitary Fsh (gene expression and protein release) in vivo and in vitro [63-65], suggesting a 

negative feedback regulatory loop exists for gonadal sex steroids on sea bass pituitary Fsh. Nuclear 

estrogen receptors were shown to be expressed in Fsh and Lh producing cells in sea bass pituitary and 

the esr2b form was down-regulated by E2 treatment in castrated animals, thus suggesting a direct 

participation of nuclear Esrs on the control of gonadotropin hormone synthesis [66, 67]. Future 

localization and functional studies should establish if the two sea bass gpers can also mediate E2 effects 
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on pituitary gonadotropin production and other neuroendocrine functions and if rapid non-genomic 

mechanisms are involved. Future studies will also evaluate if and how hypothalamic/pituitary gper 

expression is regulated by E2. We have already reported the down regulation of both gpera and gperb 

in immature sea bass liver and the up regulation of gperb in the scales, where gpera was not expressed 

[16]. Moreover, it is also possible that gpers mediate estrogenic effects not related to reproduction in 

the brain of both males and females. These may include mediation of rapid E2 effects as observed on 

zebrafish radial glial cells, that are also rich in expression of nuclear estrogen receptors and aromatase 

[68], or actions associated with neuroprotection and behavior as reported in both sexes in mammals 

[69-71]. 

In summary, we report the identification of two estrogen membrane receptor genes gpera and gperb 

in sea bass and in other teleost fish, which probably arose during the teleost specific whole genome 

duplication (3R). The two receptors had a differential tissue distribution with gpera strongly expressed 

in brain and pituitary while gperb had a more widespread distribution with prevalence in gills and 

other osmoregulatory tissues. This study also revealed that both transcripts were expressed in pituitary 

and hypothalamus during the entire reproductive cycle in both male and female sea bass. In both male 

and female sea bass, significant differences in transcript abundance were found for gpera and gperb 

that may be related to their involvement in the estrogenic control of particular reproductive phases 

during the annual reproductive cycle, namely the pituitary secretion of gonadotropins or other 

hormones. The tissue distribution and patterns of regulation of the two duplicate gpers supports their 

role in mediating non-classical actions of estrogen in responsive tissues, with a more widespread target 

range for gperb, and possible functional specialization of the two forms between tissues and stages of 

the reproductive cycle. 
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